Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА ПРИКЛАДНОЙ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИФТИС

Протокол № 1

от 28.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭЛЕКТРОТЕХНИЧЕСКАЯ И ЭЛЕКТРОННАЯ СХЕМОТЕХНИКА

Направление подготовки (специальность)

[1] 15.03.04 Автоматизация технологических процессов и производств

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	3	108	30	15	15		12	0	Э
Итого	3	108	30	15	15	7	12	0	

АННОТАЦИЯ

В программе изложены основные свойства, методы расчета и анализа линейных электрических цепей в стационарных и переходных режимах. Рассматриваются основные пассивные элементы электронных устройств. Анализируются вопросы распространения импульсных и гармонических сигналов в пассивных цепях с сотредоточеннными параметрами. Обсуждаются основные свойства полупроводниковой элементной базы: диодов, полевых, биполярных транзисторов. Обсуждаются основные принципы построения импульсных источников питания радиоэлектронной аппаратуры.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью курса является знакомство студентов с основами теории электрических цепей, электроники и схемотехники. Формирование у студентов навыков анализа электрических схем при гармонических и импульсных воздействиях, умения применять расчетные методы анализа переходных процессов в линейных электрических цепях, вырабатывание у студентов высокой культуры мышления, готовности к обобщению, анализу, критическому осмыслению, систематизации и прогнозировании при проектировании и эксплуатации электрофизических установок.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Настоящая учебная дисциплина является необходимой при подготовке студентов, специализирующихся в области исследования ядерно-физических и электрофизических процессов, импульсной и сильноточной электроники, а также при конструировании элементов автоматики, электроники и электрофизического оборудования.

Для успешного освоения дисциплины студент должен знать: общую физику, теоретические основы электротехники, математический анализ, теорию линейных электрических цепей для импульсных систем.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
ОПК-1 [1] – Способен применять	3-ОПК-1 [1] – Знать: методы математического анализа и
естественнонаучные и	моделирования в профессиональной деятельности
общеинженерные знания, методы	У-ОПК-1 [1] – Уметь: применять методы
математического анализа и	математического анализа и моделирования для решения
моделирования в	поставленных задач
профессиональной деятельности	В-ОПК-1 [1] – Владеть: методами математического
	анализа и моделирования для решения поставленных
	задач
ОПК-11 [1] – Способен проводить	3-ОПК-11 [1] – Знать: алгоритм и методы проведения

научные эксперименты с использованием современного исследовательского оборудования и приборов, оценивать результаты исследований	научных экспериментов, альтернативные способы получения конечного результата У-ОПК-11 [1] — Уметь: планировать, осуществлять подготовку и выполнение экспериментальных исследований, проводить расчёты и эксперименты по заданному алгоритму. Использовать современное исследовательское оборудование и приборы, оценивать результаты исследований В-ОПК-11 [1] — Владеть: навыками проведения исследовательских работ, методиками анализа и планирования экспериментальных исследований
ОПК-13 [1] — Способен применять стандартные методы расчета при проектировании систем автоматизации технологических процессов и производств	3-ОПК-13 [1] — Знать: методы расчета проектирования систем автоматизации технологических процессов и производств У-ОПК-13 [1] — Уметь: применять стандартные методы расчета при проектировании систем автоматизации технологических процессов и производств В-ОПК-13 [1] — Владеть: методами расчета проектирования систем автоматизации технологических процессов и производств

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин
воспитания		
Интеллектуальное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин гуманитарного,
	формирование культуры	естественнонаучного,
	умственного труда (В11)	общепрофессионального и
		профессионального модуля для
		формирования культуры умственного
		труда посредством вовлечения
		студентов в учебные исследовательские
		задания, курсовые работы и др.
Профессиональное и	Создание условий,	1.Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин
	формирование глубокого	естественнонаучного и
	понимания социальной	общепрофессионального модуля для: -
	роли профессии,	формирования позитивного отношения к
	позитивной и активной	профессии инженера (конструктора,
	установки на ценности	технолога), понимания ее социальной
	избранной специальности,	значимости и роли в обществе,
	ответственного	стремления следовать нормам
	отношения к	профессиональной этики посредством
	профессиональной	контекстного обучения, решения
	деятельности, труду (В14)	практико-ориентированных
		ситуационных задач формирования
		устойчивого интереса к
		профессиональной деятельности,

Профессиональное и трудовое воспитание	Создание условий, обеспечивающих, формирование психологической готовности к профессиональной деятельности по избранной профессии (В15)	способности критически, самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; - формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: - формирования навыков системного видения роли и значимости выбранной профессии в социально-экономических отношениях через контекстное обучение Использование воспитательного потенциала дисциплин общепрофессионального модуля для: - формирования устойчивого интереса к профессиональной деятельности, потребности в достижении результата, понимания функциональных обязанностей и задач избранной профессиональной ответственности через выполнение учебных, в том числе практических заданий, требующих строгого соблюдения правил техники безопасности и инструкций по работе с оборудованием в рамках лабораторного практикума.
--	--	--

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	6 Семестр						
1	Первый раздел	1-8	16/8/8		25	КИ-8	3-ОПК-11, У-ОПК-11, В-ОПК-11
2	Второй раздел	9-15	14/7/7		25	КИ-15	3-ОПК-1, У-ОПК-1, В-ОПК-1, 3-ОПК-13, У-ОПК-13, В-ОПК-13
	Итого за 6 Семестр		30/15/15		50		
	Контрольные мероприятия за 6 Семестр				50	Э	3-ОПК-13, У-ОПК-13, В-ОПК-13

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	6 Семестр	30	15	15
1-8	Первый раздел	16	8	8
1 - 2	Основы теории электрических цепей	Всего а	удиторных	часов
	Электрическая цепь. Законы Кирхгофа. Применение	4	2	2
	законов Ома и Кирхгофа при анализе линейной	Онлайн	I	
	электрической цепи. Метод комплексных амплитуд.	0	0	0
	Активная, реактивная и полная мощности. Метод			
	эквивалентного генератора. Метод узловых потенциалов.			
	Резонансы токов и напряжений. Векторные диаграммы.			
	Взаимная индуктивность. Анализ индуктивно-связанных			
	цепей.			
3 - 4	Переходные процессы в электрических цепях с	Всего а	удиторных	часов
	соредоточенными параметрами	4	2	2
	Правила коммутации. Классический метод расчета	Онлайн	I	

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	переходных процессов. Применение преобразования	0	0	0
	Лапласа к расчету переходных процессов. Эквивалентные			
	операторные схемы. Переход от изображения к оригиналу.			
	Теорема разложения. Расчет переходных процессов в			
	цепях с источниками сложного сигнала. Переходные			
	функции цепи. Интеграл Дюамеля			
5 - 6	Элементная база электронных устройств		аудиторны	
	Полупроводники. Структуры полупроводников.	4	2	2
	Энергетические уровни и зоны. Носители заряда.	Онлай		
	Полупроводниковые переходы и контакты. Электронно-	0	0	0
	дырочные переходы, их свойства и характеристики.			
	Полупроводниковые диоды. Стабилитроны. Защитные			
	диоды. Варисторы. Биполярные транзисторы: принцип			
	действия, характеристики и параметры.			
	Полевые транзисторы, их характеристики и параметры			
7 - 8	Оптоэлектронные приборы, интегральные		аудиторны	
	микросхемы, усилители	4	2	2
	Оптоэлектронные приборы: фоторезисторы, фотодиоды,	Онлай	1	1
	фототранзисторы, светодиоды и оптроны.	0	0	0
	Интегральные микросхемы. Краткие сведения о			
	технологиях их изготовления.			
	Полупроводниковые и гибридные микросхемы, сравнение			
	по основным параметрам.			
	Усилители, классификация, основные параметры.			
	Амплитудно-частотные, фазочастотные и переходные			
	характеристики. Линейные и нелинейные искажения,			
	шумы и помехи.			
	Простейшие транзисторные усилительные каскады. Схемы			
	с общим эмиттером и общим коллектором.			
9-15	Второй раздел	14	7	7
9 - 10	Интегральные операционные усилители		аудиторны	
	Обратные связи, классификация. Влияние обратных связей	4	2	2
	на основные характеристики и параметры усилителей.	Онлай		
	Устойчивость цепей с обратными связями, возникновение	0	0	0
	возбуждений.			
	Интегральные операционные усилители (ОУ). Основные			
	каскады ОУ. Характеристики и параметры ОУ.			
	Операционные усилители общего применения.			
	Специализированные ОУ: прецизионные,			
	быстродействующие, микромощные, мощные,			
44 4=	программируемые.	<u></u>		
11 - 12	Цепи на основе операционных усилителей		аудиторны	
	Инвертирующие, неинвертирующие, дифференциальные и	4	2	2
	суммирующие усилители на основе микросхем ОУ.	Онлай	1	T -
	Усилители на основе ОУ с нелинейными обратимыми	0	0	0
	связями: логарифмические, экспопотенциальные. Цепи на			
	основе ОУ с частотно-независимой обратной связью:			
	зарядово-чувствительные усилители, дифференциаторы и			
	интеграторы. Активные фильтры. Типы аппроксимаций.			
	Активные звенья, их реализация на ОУ. Генераторы			
ı	синусоидальных колебаний.			
		Ì		1

13 - 14	Импульсные источники питания РЭА	Всего а	аудиторных	часов	
	Источники питания электронной аппаратуры, требования	4	2	2	
	к ним в экспериментальных физических установках.	Онлайн			
	Принципы построения стабилизаторов напряжения и тока.	0	0	0	
	Использование ОУ в стабилизаторах. Интегральные				
	микросхемы стабилизаторов, их основные параметры и				
	особенности применения. Формирователи прямоугольных				
	импульсов. Ключи на биполярных и полевых				
	транзисторах, ьиполярных транзиторах с изолированным				
	затвором. Принципы построения генераторов импульсных				
	сигналов.				
	Микросхемы для импульсных источников питания.				
	Импульсные источники питания с ШИМ и ЧИМ				
	управлением. Основные схемы силовых каскадов				
	преобразователей напряжения.				
15	Генераторы импульсных сигналов и их схемотехника	Всего а	аудиторных	часов	
	Линейные источники питания и их применение.	2	1	1	
	Генераторы импульсных сигналов на микросхемах ОУ:	Онлайі	H		
	одновибраторы и мультивибраторы. Генераторы линейно-	0	0	0	
	изменяющегося напряжения, общие принципы				
	построения, реализация на основе микросхем ОУ.				
	Однотактные и двухтактные схемы полупроводниковых				
	генераторов импульсных напряжений. Схемотехника				
	функциональных узлов импульсных источников питания				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	6 Семестр
1 - 4	Элементы и параметры электрических цепей переменного тока
	Изучаются пассивные цепи при гармоническом воздействии, схемы выпрямления
	напряжения, характеристики полупроводниковых диодов
5 - 8	Силовые полуроводниковые коммутаторы в системах питания
	электрофизической аппаратуры
	Изучаются режимы работы транзисторов в усилительном и ключевых режимах,
	драйверы управления полевыми транзисторами.
9 - 12	Импульсные источники питания РЭА
	Основные схемы построения однотактных и двухтактных преобразователей
	напряжения

13 - 15	Система питания импульсного нейтронного генератора	
	Изучается структура и принцип работы системы импульсного питания генератора	
	нейтронов для аппаратуры геофизических исследований скважин	

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	6 Семестр
1 - 2	Основы теории электрических цепей
	Электрическая цепь. Законы Кирхгофа. Применение законов Ома и Кирхгофа при
	анализе линейной электрической цепи. Метод комплексных амплитуд. Активная,
	реактивная и полная мощности. Метод эквивалентного генератора. Метод узловых
	потенциалов. Резонансы токов и напряжений. Векторные диаграммы. Взаимная
	индуктивность. Анализ индуктивно-связанных цепей.
3 - 4	Переходные процессы в электрических цепях с соредоточенными параметрами
	Правила коммутации. Классический метод расчета переходных процессов.
	Применение преобразования Лапласа к расчету переходных процессов.
	Эквивалентные операторные схемы. Переход от изображения к оригиналу. Теорема
	разложения. Расчет переходных процессов в цепях с источниками сложного сигнала.
	Переходные функции цепи. Интеграл Дюамеля
5 - 6	Элементная база электронных устройств
	Полупроводники. Структуры полупроводников. Энергетические уровни и зоны.
	Носители заряда.
	Полупроводниковые переходы и контакты. Электронно-дырочные переходы, их
	свойства и характеристики.
	Полупроводниковые диоды. Стабилитроны. Защитные диоды. Варисторы.
	Биполярные транзисторы: принцип действия, характеристики и параметры.
	Полевые транзисторы, их характеристики и параметры
7 - 8	Оптоэлектронные приборы, интегральные микросхемы, усилители
	Оптоэлектронные приборы: фоторезисторы, фотодиоды, фототранзисторы,
	светодиоды и оптроны.
	Интегральные микросхемы. Краткие сведения о технологиях их изготовления.
	Полупроводниковые и гибридные микросхемы, сравнение по основным параметрам.
	Усилители, классификация, основные параметры. Амплитудно-частотные,
	фазочастотные и переходные характеристики. Линейные и нелинейные искажения,
	шумы и помехи.
	Простейшие транзисторные усилительные каскады. Схемы с общим эмиттером и
	общим коллектором.
9 - 10	Интегральные операционные усилители
	Обратные связи, классификация. Влияние обратных связей на основные
	характеристики и параметры усилителей. Устойчивость цепей с обратными связями,
	возникновение возбуждений.
	Интегральные операционные усилители (ОУ). Основные каскады ОУ.
	Характеристики и параметры ОУ. Операционные усилители общего применения.
	Специализированные ОУ: прецизионные, быстродействующие, микромощные,
	мощные, программируемые.
11 - 12	Цепи на основе операционных усилителей
	Инвертирующие, неинвертирующие, дифференциальные и суммирующие усилители
	на основе микросхем ОУ.
	Усилители на основе ОУ с нелинейными обратимыми связями: логарифмические,
	экспопотенциальные. Цепи на основе ОУ с частотно-независимой обратной связью:
	зарядово-чувствительные усилители, дифференциаторы и интеграторы. Активные
	зарядово простиненные устантели, дифференции торы и интеграторы. Активные

	фильтры. Типы аппроксимаций. Активные звенья, их реализация на ОУ. Генераторы		
	синусоидальных колебаний.		
13 - 14	14 Импульсные источники питания РЭА		
	Источники питания электронной аппаратуры, требования к ним в экспериментальных		
	физических установках. Принципы построения стабилизаторов напряжения и тока.		
	Использование ОУ в стабилизаторах. Интегральные микросхемы стабилизаторов, их		
	основные параметры и особенности применения. Формирователи прямоугольных		
	импульсов. Ключи на биполярных и полевых транзисторах, ьиполярных транзиторах		
	с изолированным затвором. Принципы построения генераторов импульсных сигналов.		
	Микросхемы для импульсных источников питания. Импульсные источники питания с		
	ШИМ и ЧИМ управлением. Основные схемы силовых каскадов преобразователей		
	напряжения.		
15	Генераторы импульсных сигналов и их схемотехника		
	Линейные источники питания и их применение. Генераторы импульсных сигналов на		
	микросхемах ОУ: одновибраторы и мультивибраторы. Генераторы линейно-		
	изменяющегося напряжения, общие принципы построения, реализация на основе		
	микросхем ОУ. Однотактные и двухтактные схемы полупроводниковых генераторов		
	импульсных напряжений. Схемотехника функциональных узлов импульсных		
	источников питания		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1. Информационно-коммуникационные технологии.
- 2. Работа в малой группе.
- 3. Опережающая самостоятельная работа.

Формы организации учебного процесса:

- 1. Лекции.
- 2. Практические занятия и лабораторные работы.
- 3. Самостоятельная работа студентов.

Содержание дисциплины имеет как теоретическую, так и практическую направленность. Преподавание этого курса направлено на получение практических навыков в области разработки и эксплуатации схем электропитяния электрофизических установок. В связи с этим изучение курса предполагает сочетание таких взаимодополняющих форм занятий как лекция, практическое занятие, самостоятельная работа с научными и учебно-методическими источниками.

Лекционный материал освещает основные теоретические положения основных методов анализа электрических цепей. В процессе изложения лекционного материала применяются лекции-информации, электронные средства обучения (презентации). Практические занятия проводятся методом дискуссии, обсуждения результатов индивидуальных заданий.

В процессе освоения курса студенты выполняют цикл лабораторных работ, рабочие задания которых, ориентированы на формирование у них навыков активной творческой деятельности, необходимой для успешного выполнения и защиты этих работ.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ОПК-1	3-ОПК-1	КИ-15
	У-ОПК-1	КИ-15
	В-ОПК-1	КИ-15
ОПК-11	3-ОПК-11	КИ-8
	У-ОПК-11	КИ-8
	В-ОПК-11	КИ-8
ОПК-13	3-ОПК-13	Э, КИ-15
	У-ОПК-13	Э, КИ-15
	В-ОПК-13	Э, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
	5 — «отлично»	A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
90-100			последовательно, четко и логически
70-100			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89	4 – « <i>xopowo</i> »	В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
		D	по существу излагает его, не допуская
70-74			существенных неточностей в ответе на
			вопрос.
65-69	3 — «удовлетворительно»	Е	Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2.—	F	Оценка «неудовлетворительно»
Ниже 60	«неудовлетворительно»		выставляется студенту, который не знает
	<i>«пеуоовленьоринельно»</i>		значительной части программного

	материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить
	обучение без дополнительных занятий по соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А 92 Основы теории цепей : учебник для вузов, Атабеков Г. И., Санкт-Петербург: Лань, 2021
- 2. 621.38 M30 Основы электроники : учебное пособие для вузов, Марченко А.Л., Москва: ДМК Пресс, 2009
- 3. 621.3 А92 Приборы и методы измерения электрических величин : учеб. пособие для вузов, Атамалян Э.Г., Москва: Дрофа, 2005
- 4. ЭИ Б 53 Теоретические основы электротехники. В 2 т. Том 1. Электрические цепи : Учебник для вузов, Бессонов Л. А., Москва: Юрайт, 2021

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ М31 Микросхемы операционных усилителей и их применение : , Масленников В.В., Москва: МИФИ, 2009
- 2. ЭИ М31 Основная элементная база электронных устройств : учебное пособие для вузов, Масленников В.В., Москва: НИЯУ МИФИ, 2012

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1.Обшие положения

- 1.1. Цель методических рекомендаций обеспечить студенту оптимальную организацию процесса изучения дисциплины, а также выполнения различных форм самостоятельной работы
- 1.2. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.3. Приступая к изучению дисциплины студенту необходимо ознакомиться:
 - с содержанием рабочей программы дисциплины,
 - с целями и задачами дисциплины,
 - рекомендуемыми литературными источниками
- методическими разработками по данной дисциплине, имеющимися на образовательном портале и сайте кафедры
 - 2. Рекомендации по подготовке к лекционным занятиям
- 2.1. Изучение дисциплины требует систематического и последовательного накопления знаний, следовательно, пропуски отдельных тем не позволяют глубоко освоить предмет. Поэтому студентам, пропустившим занятия, необходимо самостоятельно проработать тему.
- 2.2. Для понимания материала учебной дисциплины и качественного его усвоения рекомендуется:
- вести конспект лекций. Конспектирование представляет собой сжатое и свободное изложение наиболее важных, кардинальных вопросов темы, излагаемой в лекции. Ведение конспекта создает благоприятные условия для запоминания услышанного, т.к. в этом процессе принимают участие слух, зрение и рука. Конспект ведется в тетради или на отдельных листах.
 - перед очередной лекцией просмотреть по конспекту материал предыдущей лекции;
- прорабатывать учебный материал лекции по учебнику и учебным пособиям для успешного освоения материала
- регулярно отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам
 - записывать возможные вопросы, которые можно задать лектору на лекции
 - 3. Рекомендации по подготовке к практическим занятиям
- 3.1. Практические занятия служат для закрепления изученного материала. Подготовка к практическому занятию включает в себя текущую работу над учебными материалами с использованием конспектов и рекомендуемой основной и дополнительной литературы.
 - 3.2. Обучающимся следует при подготовке к практическим занятиям:
- до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;
- внимательно прочитать материал лекций, относящихся к данному практическому занятию;
- рабочая программа дисциплины может быть использована в качестве ориентира в организации подготовки и обучения;
- в ходе практических занятий давать конкретные, четкие ответы по существу вопросов, доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.
 - 4. Рекомендации по подготовке и выполнению лабораторных работ
- 4.1. Лабораторные работы это один из основных видов учебных занятий, направленный на экспериментальное подтверждение теоретических положений. В процессе лабораторных

занятий обучающиеся выполняют несколько лабораторных работ (заданий) под руководством преподавателя в соответствии с изучаемым содержанием учебного материала

- 4.2. Обучающимся рекомендуется:
- ознакомиться с графиком выполнения лабораторных работ согласно календарному плану дисциплины;
- перед выполнением лабораторной работы самостоятельно изучить теоретическую часть используя лабораторный практикум, подготовить ответы на контрольные вопросы;
- перед выполнением работы оформить лабораторный журнал для фиксации результатов измерений и последующего их обработки;
- в процессе лабораторной работы четко следовать инструкциям и указаниям преподавателя или дежурного лаборанта, не приступать к выполнению работы без разрешения; руководствоваться правилами техники безопасности и мерами предосторожности, указанными в описаниях;
- по завершению работы привести рабочее место в порядок и сдать лабораторный стенд преподавателю или дежурному лаборанту;
- выполнение работы заканчивается составлением краткого отчета, в котором следует указать: что и каким методом исследовалось или определялось; какой результат и с какими погрешностями (абсолютными и относительными) был получен; краткое обсуждение полученных результатов; анализ погрешностей;
- Защитить результаты лабораторной работы до начала следующей по расписные работы. Не рекомендуется иметь более одной не сданной работы перед началом следующей работы.
 - 5. Самостоятельная работа обучающихся
- 5.1.Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 5.2. Качество освоения учебной дисциплины находится в прямой зависимости от способности студента самостоятельно и творчески учиться.
- 5.3.Обучающимся следует руководствоваться графиком самостоятельной работы, определенным рабочим планом дисциплины и выполнять все плановые задания, выдаваемые преподавателем для самостоятельной работы, и представляться в установленный срок
 - 6. Рекомендации по подготовке и сдаче аттестации по дисциплине
- 6.1 По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 6.2.По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и промежуточная аттестация.
- 2.5.3. Текущий контроль подразумевает проверку готовности студентов к занятиям, могут быть использованы различные проверочные задания.
- 6.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и конце семестра.
- 6.5. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает сдачу зачета (экзамена) и самостоятельную подготовку к нему
- 6.6. При подготовке к аттестации необходимо по рекомендованным литературным источникам проработать теоретический материал и внимательно изучить материал лекций, соответствующий вопросам, выносимым на аттестацию.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

- 1.Общие положения
- 1.1. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.2.На первом занятии преподаватель:

знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;

уточняет наполнение лекций и планы практических (семинарских, лабораторных) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;

рекомендует основную и дополнительную литературу для успешного освоения дисциплины;

доводит до сведения студентов систему оценки знаний.

- 2. Рекомендации по подготовке и преподаванию дисциплины
- 2.1. Рекомендации по подготовке и проведению лекций:
- 2.1.1.Цель лекции организация целенаправленной познавательной деятельности студентов по овладению программным материалом учебной дисциплины. При этом лекционный материал рекомендуется постоянно актуализировать (вносить замечания, дополнения, пояснения и т.д.).
- 2.1.2. К типичным структурным элементам лекции относятся: вступление, основная часть, заключение. В начале лекции преподаватель называет тему лекции, основные вопросы, выносимые на лекцию, указывает основную и дополнительную литературу и главы и параграфы в ней, где изложен материал лекции. После каждого раздела делаются обобщающие выводы и даются указания по самостоятельной работе над материалом лекции.
- 2.1.3 Рекомендуется максимально использовать наглядные пособия и технические средства обучения. Для этого разрабатываются презентации. Каждый слайд должен содержать основные положения и сопровождаться дополнительными примерами и пояснениями преподавателя.
 - 2.2. Рекомендации по подготовке и проведению практических (семинарских) занятий:
- 2.2.1. Цель практических (семинарских) занятий предоставление возможностей для углубленного изучения теории, овладения практическими навыками и выработки самостоятельного творческого мышления у студентов. На каждом таком занятии обучающиеся решают практические задачи и демонстрируют результаты выполнения домашнего задания, выданного на предыдущем занятии.
- 2.2.2. Для максимального усвоения дисциплины рекомендуется решение задач студентов по материалам лекций и практических работ. Подборка заданий осуществляется на основе изученного теоретического материала. Такой подход позволяет повысить мотивацию студентов при конспектировании лекционного материала.
 - 2.3. Рекомендации по организации руководства самостоятельной работой студентов
- 2.3.1. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.

- 2.3.2. В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем.
 - 2.4. Рекомендации по подготовке и проведению лабораторных работ:
- 2.4.1. Лабораторная (практическая) работа это такой метод обучения, при котором обучающиеся под руководством преподавателя и по заранее намеченному плану проделывают опыты или выполняют определенные практические задания и в процессе их воспринимают и осмысливают новый учебный материал.
- 2.4.2.Проведение лабораторных работ включает в себя следующие методические приемы:
 - постановку темы занятий и определение задач лабораторно-практической работы;
 - определение порядка лабораторно-практической работы или отдельных ее этапов;
- непосредственное выполнение лабораторно-практической работы учащимися и контроль преподавателя за ходом занятий и соблюдением техники безопасности;
- подведение итогов лабораторно-практической работы и формулирование основных выводов.
- 2.4.3 Преподаватель проверяет результаты выполнения лабораторной работы, оформленной учащимися в виде отчета, форма и содержание которого определяются соответствующими рекомендациями, приведенными в лабораторном практикуме дисциплины.
- 2.4.4. Оценки за выполнение лабораторной работы являются показателями текущей успеваемости учащихся по учебной дисциплине.
 - 2.5. Рекомендации по осуществлению контроля знаний обучаемых
- 2.5.1. По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 2.4.2. По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и итоговая аттестация.
- 2.4.3. Текущий контроль подразумевает проверку готовности студентов к лекционным, практическим занятиям, могут быть использованы различные проверочные задания.
- 2.4.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и конце семестра.
- 2.4.5. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает приём зачета/экзамена и самостоятельную подготовку к нему.

Автор(ы):

Масленников Сергей Павлович, д.т.н., доцент