Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ТВЕРДОГО ТЕЛА И НАНОСИСТЕМ

ОДОБРЕНО

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

КОГЕРЕНТНОЕ ВЗАИМОДЕЙСТВИЕ УЛЬТРАКОРОТКИХ РЕНТГЕНОВСКИХ ИМПУЛЬСОВ С ВЕЩЕСТВОМ

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	3	108	32	0	0		76	0	3
Итого	3	108	32	0	0	0	76	0	

АННОТАЦИЯ

В курсе систематическое изложение основных теоретических дается экспериментальных методов когерентного взаимодействия лазерного рентгеновского и синхротронного излучения (СИ) с конденсированным состоянием вещества. Особое внимание уделяется уникальным когерентным свойствам и использованию временной структуры лазерного излучения, что позволяет проводить эксперименты с временным разрешением до 10 фемтосекунд. Приведены основы теории распространения, излучения и поглощения коротковолновых лазерных фотонов. Описаны основные экспериментальные схемы, в том числе pump & probe и "рентгеновское кино". Дается введение в рентгеновскую оптику и микроскопию, динамическую и кинематическую теорию рассеяния рентгеновских лучей, генерацию синхротронного и рентгеновского лазерного излучения. Проведено сравнение источников СИ и рентгеновских лазеров на свободных электронах (XFEL), работающих в жестком и мягком диапазоне рентгеновского излучения. Обсуждаются возможности использования рентгеновского излучения для исследования конденсированного состояния вещества и биологических объектов, и формирования рентгеновских волновых полей в кристаллах на примере существующих лазерных машин (FLASH, LCLS) и XFEL GmbH. Представлены основные научные задачи и миссии 6 научно-исследовательской станции XFEL в Гамбурге.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Показать возможности одного из современных экспериментальных методов исследования твердого тела, дать навык оценки и расчета необходимых параметров.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина входит в число специализирующих. При освоении дисциплины предполагается, что студенты знакомы с содержанием таких курсов, как уравнения математической физики, теория поля, квантовая механика, атомная физика, спектроскопия, физика твердого тела, электротехника и электроника.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции

		стандарт-ПС, анализ опыта)	
	инновационный;		
сбор и анализ информационных источников и исходных данных для планирования и разработки исследовательских проектов; подготовка исходных данных для выбора и обоснования научно-технических и организационных решений на основе экономического анализа; участие в разработке и реализации проектов исследовательской и инновационной направленности в команде исполнителей.	научно-технические и организационные решения	ПК-6 [1] - Способен разрабатывать планы и программы организации инновационной деятельности научнопроизводственного коллектива, осуществлять технико-экономическое обоснование инновационных проектов Основание: Профессиональный стандарт: 06.022	3-ПК-6[1] - Знать основы планирования и организации научных инновационных исследований в профессиональной области; правила и принципы научной этики, методики оценки инновационных проектов.; У-ПК-6[1] - Уметь оценивать и развивать инновационный потенциал новых научных и научнотехнологических разработок, осуществлять технико-экономическое обоснование инновационных проектов.; В-ПК-6[1] - Владеть навыками планирования организации инновационной деятельности научнопроизводственного коллектива и технико-экономической оценки (экспертизы) инновационных
произ	Зводственно-технологи [,]	неский неский на население и положение	проектов
участие в	методы контроля	ПК-9 [1] - Способен	3-ПК-9[1] - Знать
модернизации существующих, разработке и внедрении новых методов контроля качества материалов, производственнотехнологических процессов и готовой	качества материалов, процессов и продукции	проводить математическое и компьютерное моделирование объектов, систем, процессов и явлений в избранной предметной области	основные методы и принципы математического и компьютерного моделирования объектов, систем, процессов и явлений в избранной предметной области.;

продукции в сфере высоких и наукоемких технологий;

Основание: Профессиональный стандарт: 06.022

У-ПК-9[1] - Уметь применять методы математического и компьютерного моделирования объектов, систем, процессов и явлений в избранной предметной области; В-ПК-9[1] - Владеть навыками математического и компьютерного моделирования объектов, систем, процессов и явлений

научно-исследовательский

проведение научных и аналитических исследований по отдельным разделам (этапам, заданиям) темы (проекта) в рамках предметной области по профилю специализации в соответствии с утвержденными планами и методиками исследований; участие в проведении наблюдений и измерений, выполнении эксперимента и обработке данных с использованием современных теоретических моделей, экспериментальных данных и компьютерных технологий; участие в проведении теоретических исследований, построении физических, математических и

компьютерных

запланированные этапы исследования; результаты наблюдений и измерений; физические, математические и компьютерные модели явления; компьютерные программы и алгоритмы для научноисследовательских и прикладных целей.

ПК-22.2 [1] - Способен ориентироваться в последних теоретических и экспериментальных достижениях физики конденсированного состояния, в возможностях современных пучковых, плазменных и лазерных технологий в применении к конкретным методам создания, обработки и исследования различных твердотельных материалов и наноструктур

Основание: Профессиональный стандарт: 06.022

3-ПК-22.2[1] - знать последние теоретические и экспериментальные достижения физики конденсированного состояния, возможности современных пучковых, плазменных и лазерных технологий в применении к конкретным методам создания, обработки и исследования различных твердотельных материалов и наноструктур; У-ПК-22.2[1] - уметь предложить схему эксперимента для обработки или исследования твердотельных материалов и наноструктур, и сформулировать соответствующую математическую модель; В-ПК-22.2[1] владеть теоретическими

моделей изучаемых		моделями
процессов и явлений,		взаимодействия
в проведении		излучения с
аналитических		веществом
		вещеетвом
исследований в		
предметной области		
по профилю		
специализации, выбор		
методов и подходов к		
решению		
поставленной		
научной проблемы,		
формулировка		
математической		
модели явления,		
аналитические и		
численные расчеты;		
участие в разработке		
новых алгоритмов и		
компьютерных		
программ для научно-		
исследовательских и		
прикладных целей.		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	3 Семестр						
1	Часть 1	1-8	24/0/0		25	КИ-8	3-ПК- 6, y- ПК-6, B- ПК-6, 3-ПК- 9, y- ПК-9, B- ПК-9, 3-ПК- 22.2, y- ПК-

	T	1		ı	I	I	1
							22.2, В- ПК- 22.2
2	Часть 2	9-12	8/0/0		25	КИ-12	3-ПК-6, y- ПК-6, B- ПК-6, 3-ПК-9, Y- ПК-9, 3-ПК-22.2, y- ПК-22.2, HK-22.2,
	Итого за 3 Семестр		32/0/0		50		22.2
	Контрольные мероприятия за 3 Семестр		32/0/0		50	3	3-ПК- 6, У- ПК-6, В- ПК-6, 3-ПК- 9, У- ПК-9, 3-ПК- 22.2, У- ПК- 22.2, В- ПК- 22.2, В- ПК- 22.2,

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
--------	---------------------

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

чение	
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	3 Семестр	32	0	0
1-8	Часть 1	24	0	0
1	Вводная лекция	Всего а	удиторных	часов
	Рентгеновский лазер на свободных электронах (XFEL).	3	0	0
	Свойства э/м излучения, относящегося к рентгеновскому и	Онлайн	I	
	ВУФ диапазонам. Основные процессы рассеяния,	0	0	0
	поглощения и испускания коротковолнового излучения.			
	Рассеяние, дифракция и преломление. Электронные уровни			
	атомов и разрешенные переходы.			
2	Рассеяние и рефракция рентгеновских волн. Уравнения	Всего а	⊥ ıудиторных	часов
	Максвелла.	3	0	0
	Уравнения Максвелла и распространение волн в свободном	Онлайн	H	
	пространстве и материальных средах. Индекс рефракции.	0	0	0
	Отражение плоской волны от плоской границы раздела.			
	Явление полного внешнего отражения. Рефлектометрия в			
	рентгеновском диапазоне.			
3	Дифракция в кристаллах: Идеальные кристаллы	Всего аудиторных часов		
	Динамическая дифракция и уравнения Такаги-Топена.	3	0	0
	Двухволновое приближение. Дифракция по Лауэ.	Онлайн	ł	
	Волновые поля в кристалле и маятниковое решение	0	0	0
	Влияние поглощения. Эффект Бормана и подавление			
	аномального прохождения в неидеальных кристаллах			
4	Дифракция в кристаллах. Метод Стоячих	Всего а	⊥ ıудиторных	часов
	рентгеновских волн (СРВ)	3	0	0
	Отражение по Брэггу. Рентгеновская интерферометрия.	Онлайн	I	
	Рассеяние в реальных кристаллах: дефекты как источник	0	0	0
	диффузного рассеяния. Метод стоячих рентгеновских			
	волн: определение когерентной позиции и фракции.			
5	Неидеальные кристаллы		цудиторных	1
	Влияние тепловых колебаний: средняя решетка и фактор	3	0	0
	Дебая- Валлера. Динамическая теория рассеяния в	Онлайн	I	
	деформированных и колеблющихся кристаллах.	0	0	0
	Рентгеновская оптика скользящего падения.			
	Дифракционная рентгеновская оптика.			
6	Источники синхротронного излучения	Всего а	⊥ удиторных	часов
	Источники СИ и их основные характеристики. Сравнение	3	0	0
	излучения поворотных магнитов, ондуляторов и виглеров.	Онлайн	-I	

	Стандартная оптика станции СИ.	0	0	0
7	Рентгеновская микроскопия и дифракционная оптика.	Всего) avлитор	ных часов
,	Обзор методик формирования рентгеновского пучка для	3	0	0
	проведения экспериментов в современном	Онла	 йн	1 -
	материаловедении. Френелевские зонные пластинки.	0	0	0
	Дифракция излучения от отверстия (Pinhole) и зонные			
	пластинки. Фокусировка и монохроматизация при			
	дифракционном отражении (изогнутые и плоские			
	кристаллы).			
8	Рентгеновский лазер на свободных электронах (РЛСЭ)	Всего	аудитор	ных часов
	Общие принципы генерации когерентного излучения	3	0	0
	РЛСЭ. Основные элементы РЛСЭ и их характеристики.	Онла	 йн	'
	Временная структура излучения и детекторы: особенности	0	0	0
	эксперимента. Временная и пространственная			
	когерентность излучения РЛСЭ			
9-12	Часть 2	8	0	0
9	Особенности экспериментов с РЛСЭ	+ -		ных часов
	Эксперименты pump& probe. Эксперименты, требующие	2	0	0
	высокой когерентности. Приготовление пучка:	Онла	 йн	1 0
	монохроматизация, фокусировка, пространственная и	0	0	0
	временная фильтрация. Статистическое описание			
	волнового поля.			
10	Обзор станций РЛСЭ: Жесткий рентген	Всего	 э аудитор	ных часов
	Исследования вещества при экстремальных условиях с	2	0	0
	использованием рентгеновского излучения (высокие	Онла	йн	,
	давления, температуры, взрывные процессы, плотная	0	0	0
	плазма (HED High Energy density Matter). Структурные			
	исследования наносистем и динамика на уровне			
	наночастиц (Materials Imaging and Dynamics MID)			
11	Обзор станций РЛСЭ: Жесткий рентген	Всего) аулитор	ных часов
11	Структурные исследования отдельных биомолекул и	2	0	0
	наночастиц: современное состояние. Сверхбыстрая	Онла		
	когерентная дифракционная визуализация одиночных	0	0	0
	частиц, кластеров и биомолекул (SPB single particles and			
	biomolecules)			
12	Обзор станций РЛСЭ: Мягкий рентген	Roard	ЭМПИТОР	III IV HACOR
12	Исследования атомов, ионов и частиц в интенсивных	2	<u>о аудитор</u> 0	ных часов
	пучках и нелинейные эффекты (SQS Small Quantum	Онла		10
	systems). Исследования структуры и свойств атомов и	0	0	0
	биологических объектов, используя мягкое рентгеновское			
	излучение (SCS Soft x-ray Coherent Scattering)			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
--------	---------------------

чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций и самостоятельная работа студентов, заключающаяся в изучении пройденного материала и подготовке к письменным тестам. Для того чтобы дать современное состояние физики и эксперимента рентгеновского излучения, предусмотрено широкое использование современных научных работ и публикаций по данной теме. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в рамках Научной сессии НИЯУ МИФИ, а также в других московских университетах и институтах.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-22.2	3-ПК-22.2	3, КИ-8, КИ-12
	У-ПК-22.2	3, КИ-8, КИ-12
	В-ПК-22.2	3, КИ-8, КИ-12
ПК-6	3-ПК-6	3, КИ-8, КИ-12
	У-ПК-6	3, КИ-8, КИ-12
	В-ПК-6	3, КИ-8, КИ-12
ПК-9	3-ПК-9	3, КИ-8, КИ-12
	У-ПК-9	3, КИ-8, КИ-12
	В-ПК-9	3, КИ-8, КИ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	CWWIDION ZERWIZ	A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
	5 — «отлично»		усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74	4 – « <i>xopowo</i> »	D	материал, грамотно и по существу
	4 – «хорошо»		излагает его, не допуская
			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
60-64			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ S98 Synchrotron Light Sources and Free-Electron Lasers : Accelerator Physics, Instrumentation and Science Applications, Cham: Springer International Publishing, 2016
- 2. ЭИ У 88 Основы физической теории дифракции: , Москва: Лаборатория знаний, 2020
- 3. ЭИ У 88 Теория дифракционных краевых волн в электродинамике. Введение в физическую теорию дифракции: учебное пособие, Москва: Лаборатория знаний, 2020
- 4. ЭИ $\Phi 50$ Физические основы методов исследования наноструктур и поверхности твердого тела : учебное пособие для вузов, Москва: НИЯУ МИФИ, 2014

5. 621.37 М50 Физические основы лазерной технологии : учебное пособие, А. П. Менушенков,

В. Н. Неволин, В. Н. Петровский, Москва: НИЯУ МИФИ, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 621.37 М 15 Основы взаимодействия ультракороткого лазерного излучения с конденсированными средами Ч.1, Димитровград: ДИТИ НИЯУ МИФИ, 2013

- 2. 535 У88 Основы физической теории дифракции: , Москва: Бином. Лаборатория знаний, 2012
- $3.539.2~\Phi 94~\Pi$ росвечивающая электронная микроскопия и дифрактометрия материалов : , Москва: Техносфера, 2011
- 4. 537 У88 Теория дифракционных краевых волн в электродинамике. Введение в физическую теорию дифракции: , Москва: Бином. Лаборатория знаний, 2012
- 5. 535 М50 Лабораторная работа "Лазерная технология" : , А. П. Менушенков, Б. М. Жиряков, В. Н. Петровский, М.: МИФИ, 2006
- 6. 539.2 Ф50 Физические основы методов исследования наноструктур и поверхности твердого тела: учебное пособие для вузов, В. И. Троян [и др.], Москва: МИФИ, 2008
- 7. 548 Ф45 Синхротронное излучение. Методы исследования структуры веществ: учебное пособие для вузов, Г. В. Фетисов; ред. Л. А. Асланов, Москва: Физматлит, 2007
- 8. 620 Ф50 Физическое материаловедение Т.3 Методы исследования структурно-фазового состояния материалов, Н. В. Волков [и др.], Москва: МИФИ, 2008
- 9. 539.2 П75 Приборы и методы рентгеновской и электронной дифракции : учебное пособие, П. С. Чижов [и др.], Москва: МФТИ, 2011
- 10. 621.37 Э45 Ренгеновские лазеры: , Р. Элтон; Пер. с. англ., М.: Мир, 1994

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

1. сайт кафедры №70 НИЯУ МИФИ (http://kaf70.mephi.ru/)

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При освоении дисциплины предполагается, что студенты знакомы с содержанием таких курсов, как уравнения математической физики, теория поля, электродинамика, квантовая механика, атомная физика, спектроскопия, физика твердого тела, электротехника и электроника, взаимодействие излучения с веществом.

Программой курса предусмотрено, что студент должен освоить основные понятия и закономерности, относящиеся к физическим явлениям, лежащим в основе использования рентгеновского излучения в современном физическом эксперименте. Курс должен помочь студенту научиться использовать полученные теоретические знания для описания и оценочных расчетов реальных процессов.

Студент должен четко представлять свойства электромагнитного излучения, относящегося к рентгеновскому и вакуумному ультрафиолетовому диапазонам, основные процесс рассеяния, поглощения и испускания, роль внутриатомных переходов. Студент должен иметь представление о распространении волн в кристаллических и некристаллических материалах, индексе рефракции, явлении полного внутреннего отражения, методах создания слоистых структур, сверхрешеток и френелевских зонных пластинок.

В результате изучения курса студент должен знать основные свойства источников синхротронного излучения, параметры установок в НИЦ «Курчатовский институт», Spring 8 (Япония), BESSY (Германия), владеть идеями, лежащими в основе рентгеновского лазера на свободных электронах, знать методики формирования рентгеновского пучка для проведения экспериментов в современном материаловедении.

Интерактивная форма занятий может включать кратковременный внутрисеместровый контроль усвоения знаний по читаемому курсу в форме решения задач (условия формулируются в конце лекции, обсуждение предлагаемого решения в начале следующей) или ответов на качественные вопросы.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо дать студентам возможность усвоить основные понятия, характеризующие излучение РЛСЭ в сравнении с лабораторными источниками (трубками) и источниками синхротронного излучения: яркость, спектр излучения, временная и пространственная когерентность, спектрально-угловое распределение мощности, поляризационные свойства, эммитанс и траснформация пучка на удалении от источника. В ходе курса студенты должны ознакомиться с основными принципами работы источников РЛСЭ и устройств, обеспечивающих инжекцию электронов и генерацию э/м излучения: фотоинжекторов, линейных ускорителей, ондуляторов, экспериментальных станций. Дать представление о тенденциях в развитии синхротронных центров в мире и в России, информацию о возможностях НИЦ «Курчатовский институт» (Курчатовский центр синхротронных исследований и нанотехнологий) и институтов РАН.

Особое внимание в курсе лекций следует уделить процессам взаимодействия рентгеновского излучения с веществом, рентгеновским методам диагностики и исследования наноструктур с использованием мощного рентгеновского излучения.

Изложение должно строиться на основе фундаментальных свойства э/м излучения, относящегося к рентгеновскому и ВУФ диапазонам, и ранее прочитанных курсов. Должно быть приведено детальное описание основных процессов рассеяния, поглощения и испускания

коротковолнового излучения, включая рассеяние, дифракцию и преломление рентгеновских волн.

Основные формулы должны быть выведен из уравнения Максвелла и описывать распространение волн в свободном пространстве и материальных средах. В связи с широким распространением рентгеновской оптики должно быть уделено особое внимание двум принципам функционирования рентгенооптических устройств: полному внешнему отражению и дифракции, что включает в себя

- отражение плоской волны от плоской границы раздела (s и р поляризации) и явление полного внешнего отражения. Рефлектометрия и определение шероховатости поверхности.
- понятие о динамической и кинематической дифракции. Динамическая дифракция и уравнения Такаги-Топена . Двухволновое приближение. Дифракция по Лауэ. Волновые поля в кристалле и маятниковое решение. Влияние поглощения. Эффект Бормана и подавление аномального прохождения в неидеальных кристаллах.

Важным методом рентгеновской нанодиагностики является Метод Стоячих рентгеновских волн (СРВ), применяемый как с лабораторными источниками излучения, так и с лазерами на свободных электронах и источниками СИ. Ключевым понятием для данных экспериментов является: рентгеновская интерферометрия и рассеяние в реальных кристаллах. Важно довести до слушателей, что основными характеристиками распределения примеси в слое являются: когерентной позиции и фракция.

Особое внимание следует уделить влияние тепловых колебаний и понятиям о усредненной решетке и факторе Дебая- Валлера и переходу к импульсным источникам электромагнитного излучения.

В связи с тем, что на источнике РЛСЭ будет использовано оборудование, схожее с оборудованием источников синхротронного излучения следует дать сравнительное описания стандартной оптика станции СИ и станции РЛСЭ.

В целях ознакомления с возможностями рентгендифракционного эксперимента курс должен содержать обзор рентгеновской микроскопии и дифракционной оптики и обзор методик формирования рентгеновского пучка для проведения экспериментов в современном материаловедении. Дано понятие о Френелевских зонных пластинках, дифракция излучения от отверстия (Pinhole) и фокусировке и монохроматизации при дифракционном отражении (изогнутые и плоские кристаллы).

Особо следует остановиться на особенностях экспериментов с РЛСЭ, таких как pump& probe, когерентной дифракционной визуализации, рассеянии на некристаллических образцах, в том числе в струе и взвеси. Эксперименты, требующие высокой когерентности. Приготовление пучка

Должен быть дан обзор станций РЛСЭ для жесткого и мягкого рентгеновского излучения. 1) Исследования вещества при экстремальных условиях с использованием рентгеновского излучения (высокие давления, температуры, взрывные процессы, плотная плазма (HED High Energy density Matter).

2) Структурные исследования наносистем и динамика на уровне наночастиц (Materials Imaging and Dynamics MID).

- 3) Структурные исследования отдельных биомолекул и нраночастиц: современное состояние.Сверхбыстрая когерентная дифракционная визуализация одиночных частиц, кластеров и биомолекул (SPB single particles and biomolecules).
- 4) Исследования атомов, ионов и частиц в интенсивных пучках и нелинейные эффекты (SQS Small Quantum systems).
- 5) Исследования структуры и свойств атомов и биологических объектов, используя мягкое рентгеновское излучение (SCS Soft x-ray Coherent Scattering).

Автор(ы):

Носик Валерий Леонидович, к.ф.-м.н.