Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ДИСКРЕТНАЯ МАТЕМАТИКА

Направление подготовки (специальность)

[1] 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

[2] 14.05.04 Электроника и автоматика физических

установок

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	2	72	30	15	0		27	0	3
Итого	2	72	30	15	0	0	27	0	

АННОТАЦИЯ

Эта дисциплина призвана обеспечить студентов знанием основных математических теорий и методов решения проблем, характерных для прикладной математики, информатики и программирования. Она позволяет овладеть навыками и методами формального описании, моделирования и анализа объектов дискретной математики. В ходе обучения студенты изучают основые свойства и методы формального представления алгоритмов.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения дисциплины является достижение следующих результатов образования: Знания:

на уровне представлений:

- основные объекты комбинаторики и методы их описания и исследований;
- особенность комбинаторных исследований;
- система инвариантов для графов и орграфов;
- изоморфизм и гомеоморфизм графов (орграфов).

на уровне воспроизведения:

- теоретические результаты (теоремы и свойства), характерные для комбинаторных зависимостей и теории графов;
 - методы вычисления инвариантов графов (орграфов);
 - алгебраические методы формирования графов.

на уровне понимания:

- интерпретация и оценка комбинаторных зависимостей на естественном и формальных языках, в различных предметных областях;
 - оценка количественных инвариантов графов и орграфов.

Умения:

теоретические:

- основные комбинаторные проблемы;
- интерпретация комбинаторных операций;
- методы решения комбинаторных задач;
- формулировать прикладные задачи с использованием формализмов теории графов;
- сводить прикладные задачи к задачам поиска системы инвариантов на графах.

практические:

• выявлять комбинаторные проблемы и использовать соответствующие им методы решения задач;

навыки:

- применять методы решения комбинаторных задач в прикладной математике, в информатике и в программирование;
 - решения задач анализа графов (поиск характеристик и инвариантов графа)
 - решение задач синтеза графов (по заданному набору инвариантов и ограничений)

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к части профессионального обучения студентов.

Дисциплина предполагает наличие знаний и умений в объеме курса "Аналитическая геометрия" и "Математический анализ (Числовые последовательности)".

В свою очередь, дисциплина является предшествующей для следующих курсов:

• Методы оптимизации;

Дисциплина способствует развитию комбинаторного мышления при решении комбинаторных задач, развитию графических методов фиксации взаимосвязей в исследуемых структурах.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
ОПК-1 [2] — Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности и применять соответствующий физико-математический аппарат для их формализации, анализа и выработки решения.	З-ОПК-1 [2] — Знать: базовые естественнонаучные законы, сущность физических и иных явлений, определяющих изучаемые процессы и функционирование физических установок, систем их контроля и управления, методы их математического моделирования и области их применимости У-ОПК-1 [2] — Уметь: выявлять существенные свойства и взаимосвязи явлений и процессов, характерных для реализации задач профессиональной деятельности, применять физико-математические и иные модели для их исследования В-ОПК-1 [2] — Владеть: физико-математическим аппаратом для формализации и моделирования исследуемых процессов и явлений для решения исследовательских и прикладных задач профессиональной деятельности, навыком его использования для решения практических задач
ОПК-2 [2] — Способен применять математический аппарат и вычислительную технику для решения профессиональных задач	3-ОПК-2 [2] — Знать: методы математического моделирования, численного решения математических задач, алгоритмы вычислительной математики для расчетных и исследовательских задач, характерных для предмета профессиональной деятельности У-ОПК-2 [2] — Уметь: проектировать вычислительные алгоритмы и реализовывать их на средствах вычислительной техники, проектировать цифровые модели процессов и систем в области профессиональной деятельности, использовать стандартное и прикладное программное обеспечение вычислительных средств для решения практических задач В-ОПК-2 [2] — Владеть опытом создания и исследования цифровых моделей процессов и систем, стандартного системного и прикладного программного обеспечения для решения практических задач

УКЕ-1 [2] — Способен использовать знания естественнонаучных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных задачах

3-УКЕ-1 [2] — знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования У-УКЕ-1 [2] — уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи В-УКЕ-1 [2] — владеть: методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами обработки экспериментальных данных, методами работы с прикладными программными продуктами

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и

инженерии", "Критическое
мышление и основы научной
коммуникации", "Введение в
специальность", "Научно-
исследовательская работа",
"Научный семинар" для:
- формирования способности
отделять настоящие научные
исследования от лженаучных
посредством проведения со
студентами занятий и регулярных
бесед;
- формирования критического
мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Иаксимальный балл за раздел**	Аттестация ваздела (форма*, педеля)	Индикаторы освоения компетенции	
		H		О(КО Не	M 6a	A ₁ pa	12 00 0X KG	

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование	
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1. Лекционные занятия:
- а. комплект электронных презентаций/слайдов,
- b. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук)
 - 2. Практические занятия:
 - а. компьютерный класс,
 - b. презентационная техника (проектор, экран, компьютер/ноутбук),
 - с. стандартный пакет программ Microsoft Office.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ОПК-1	3-ОПК-1	3, КИ-8, КИ-15
	У-ОПК-1	3, КИ-8, КИ-15
	В-ОПК-1	3, КИ-8, КИ-15
УКЕ-1	3-УКЕ-1	3, КИ-8, КИ-15
	У-УКЕ-1	3, КИ-8, КИ-15
	В-УКЕ-1	3, КИ-8, КИ-15
ОПК-1	3-ОПК-1	3, КИ-8, КИ-15
	У-ОПК-1	3, КИ-8, КИ-15
	В-ОПК-1	3, КИ-8, КИ-15
ОПК-2	3-ОПК-2	3, КИ-8, КИ-15
	У-ОПК-2	3, КИ-8, КИ-15
	В-ОПК-2	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	же 60		Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ М 21 Дискретная математика : учебное пособие для вузов, Мальцев И. А., Санкт-Петербург: Лань, 2022
- 2. 519 Г96 Дискретная математика для информатиков и экономистов : учебное пособие, Гусева А.И., Тихомирова А.Н., Москва: НИЯУ МИФИ, 2010

3. ЭИ А 90 Дискретная математика: графы, матроиды, алгоритмы: учебное пособие, Баранский В. А., Асанов М. О., Расин В. В., Санкт-Петербург: Лань, 2020

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Самостоятельная работа студентов включает:

- повторение еженедельное теоретического (лекционного) материала и изучение материалов по курсу из дополнительных источников
- еженедельное выполнение домашних практических заданий и подготовка к практическим занятиям;
 - подготовка к контрольной работе
 - подготовка к сдаче зачета/экзамена.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

В качестве оценочного средства используется 100 бальная семестровая система, учитывающая посещаемость занятий, активность (выполнение домашних занятий), выполнение тематических домашних заданий по каждому разделу, контрольно-тестовая работа по каждому разделу.

Фонд оценочных средств содержится в приложении.

Преподаватель должен стремиться к достижению следующих результатов образования: на уровне представлений:

- основные объекты комбинаторики и методы их описания и исследований;
- особенность комбинаторных исследований.

на уровне воспроизведения:

- теоретические результаты (теоремы и свойства), характерные для комбинаторных зависимостей и теории графов;
 - методы вычисления инвариантов графов (орграфов);

• алгебраические методы формирования графов.

на уровне понимания:

• интерпретация и оценка комбинаторных зависимостей на естественном и формальных языках, в различных предметных областях;

Умения:

теоретические:

- основные комбинаторные проблемы, интерпретация комбинаторных операций;
- методы решения задач.

практические:

- выявлять комбинаторные проблемы и использовать соответствующие им методы решения задач;
- применять методы решения комбинаторных задач в прикладной математике, в информатике и в программирование.

Автор(ы):

Гусев Алексей Игоревич