Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ ЯДЕРНЫХ РЕАКТОРОВ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО МЕТОДАМ ОПТИМИЗАЦИИ

Направление подготовки (специальность)

[1] 14.05.01 Ядерные реакторы и материалы

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
9	3	108	16	0	48		28	16	3
Итого	3	108	16	0	48	16	28	16	

АННОТАЦИЯ

Настоящий курс основан на исключительно интерактивной работе студентов на ЭВМ, так что уже с первой лабораторной работы начинается практическое освоение искусства программирования на языке Фортран, являющимся самым распространенным алгоритмическим языком в области реализации алгоритмов для научных исследований. В рамках лабораторных занятий даются лишь самые необходимые сведения собственно по языку, а основное внимание уделено эффективному составлению алгоритмов и грамотной их реализации в рамках структурного программирования.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются овладение студентами практическими навыками программирования на языке Фортран для последующего их использования в учебно-исследовательской работе, при выполнении курсового и дипломного проектирования, а также в предстоящей научно-исследовательской или опытно-конструкторской работе.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для успешного усвоения дисциплины необходимо предварительно усвоить следующие дисциплины:

- 1. Высшая математика (дифференциальное и интегральное исчисление).
- 2. Аналитическая геометрия (системы координат, векторы).
- 3. Линейная алгебра (линейные пространства, операторы).

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
7.3	

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-ис	следовательский	
Проведение расчетных	Атомный	ПК-2.1 [1] - Способен	3-ПК-2.1[1] - Знать:
исследований и	ледокольный	использовать	возможности
измерений физических	флот Атомные	современные численные	использования
характеристик на	электрические	методы и	информационных
экспериментальных	станции Плавучая	профессиональные	технологий, методы

стендах и установках	АЭС Сфера	расчетные пакеты	численного анализа,
стендах и установках	научных	-	· ·
	исследований в	прикладных программ	методы определения
	1 1	0	проблемы и оценки
	области ядерной	Основание:	полученных
	физики и	Профессиональный	результатов для
	технологий	стандарт: 24.078	математического
			моделирования и
			анализа
			теплофизических и
			нейтронно-физических
			процессов с
			применением
			компьютерных кодов.;
			У-ПК-2.1[1] - Уметь:
			использовать
			специальные
			программные
			обеспечения для
			решения нейтронно-
			физических задач,
			применяя современные
			экспериментальные,
			теоретические и
			компьютерные методы
			исследований;
			В-ПК-2.1[1] - Владеть:
			навыками работы с
			современными
			программными
			средствами для
			обеспечения
			безопасности ядерных
			установок и
			•
			материалов

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых

		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
	, ,	студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных
		бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных открытий
		и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	9 Семестр						
1	Первый раздел	1-8	8/0/24		25	КИ-8	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
2	Второй раздел	9-16	8/0/24		25	КИ-16	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
	Итого за 9 Семестр		16/0/48		50		
	Контрольные мероприятия за 9 Семестр				50	3	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	9 Семестр	16	0	48
1-8	Первый раздел	8	0	24
1 - 2	Тема 1. Среда Visual Fortran, основы	Всего а	удиторных	часов
	программирования и отладки программ	2	0	6
	Создание точки останова (Break point). Варианты	Онлайн	I	
	пошаговой отладки программы. Окна «Locals» и «Watch»	0	0	0
	для отображения всех локальных переменных в текущей			
	подпрограмме (или в основной программе), их типа,			
	значений и при необходимости изменения этих значений.			
	Демонстрация возможностей работы с отладчиком Visual			
	Studio 2005 на примере работы с проектом DebugSample.			
	Алгоритм реализации критерия окончания счета при			
	расчете числовых и функциональных рядов. Базовые			
	структуры алгоритмов. Блок операторов и конструкций,			
	ветвление, цикл с параметром, циклы «пока» и «до».			
	Форматный ввод-вывод. Организация простейшего			
	табличного вывода результатов.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

3 - 4	Тема 2. Отладка программы средствами Visual Studio	Всего а	удиторных	у часов
	2005. Представление функций степенными	2	0	6
	рядами.	Онлайн		10
	Создание точки останова (Break point). Варианты	0	0	0
	пошаговой отладки программы. Окна «Locals» и «Watch»	0	U	
	для отображения всех локальных переменных в текущей			
	подпрограмме (или в основной программе), их типа,			
	значений и при необходимости изменения этих значений.			
	Демонстрация возможностей работы с отладчиком Visual			
	Studio 2005 на примере работы с проектом DebugSample.			
	Алгоритм реализации критерия окончания счета при			
	расчете числовых и функциональных рядов. Базовые			
	структуры алгоритмов. Блок операторов и конструкций,			
	ветвление, цикл с параметром, циклы «пока» и «до».			
	Форматный ввод-вывод. Организация простейшего			
	табличного вывода результатов.	D		
5 - 6	Тема 3. Программирование векторно-матричных		удиторных	
	алгоритмов. Понятия массивов и действий с ними.	2	0	6
	Алгоритмы вычислений скалярного произведения	Онлайн		
	векторов, произведений: матрицы на вектор, матрицу на	0	0	0
	матрицу, транспонирования матриц, вычисления обратной			
	матрицы, алгоритмы использования вырезки и сечений			
	матриц. Задание значений именованных констант и			
	оператор DATE. Объявление массивов и присвоение			
	значений элементам массива. Форма массива и границы			
	индексов массива. Динамические массивы. Массивы –			
	формальные параметры. Встроенные функции для работы			
	с массивами. Выражения с массивами и оператор			
	присваивания.			
7 - 8	Тема 4. Сравнительный анализ алгоритмов		удиторных	
	аппроксимаций функций Бесселя. Построение	2	0	6
	графиков.	Онлайн	H	
	Цилиндрические или Бесселевы функции как основа	0	0	0
	аналитического решения уравнения диффузии в			
	цилиндрической геометрии. Представление функций			
	Бесселя рядами. Ассимптотичекий вид и			
	аппроксимационные формулы. Математическая			
	библиотека функций Бесселя $J_0(x), J_1(x), Y_0(x)$ и Y_1			
	(х). Внешние функции для расчета точных значений			
	функций $I_0(x), I_1(x), K_0(x)$ и $K_1(x)$. Алгоритм			
	сравнительного исследования эффективности различных			
	представлений для аппроксимаций функций Бесселя.			
	Табличный и графический вывод результатов			
	исследований. Работа с символьными переменными.			
9-16	Второй раздел	8	0	24
9 - 10	Тема 5. Алгоритмы численного интегрирования		удиторных	часов
	многомерных функций	2	0	6
	Алгоритмы численного интегрирования одномерных	Онлайн	I	
	функций с автоматическим выбором шага интегрирования,	0	0	0
	модификация алгоритмов на двумерный случай. Анализ			
	эффективности применения различных интерполяционных			
	схем при интегрировании функций с разрывными	1	1	1

		I	l	1
	производными (плотность потока нейтронов).			
	Использование подпрограмм-функций для реализации			
	алгоритмов на Фортране. Особенности использования			
	имени функций в качестве фактических параметров. Блоки			
	интерфейса и атрибут INTRINSIC. Построение таблиц с			
	результатами исследований эффективности различных			
	алгоритмов.			
11 - 12	Тема 6. Интегральное представление функций Бесселя.	Всего а	удиторных	часов
	Интегральное представление функций Бесселя Ј_0 (х),Ј_1	2	0	6
	$(x),I_0(x),I_1(x)$, как частный случай применения	Онлайн	т Т	_
	алгоритмов численного интегрирования функций,	0	0	0
	зависящих от параметра, разобранных в теме 5. Алгоритм	U	O	o o
	автоматического выбора величины равномерного шага			
	интегрирования при заданной погрешности вычисления			
	интегрирования при заданной погрешности вычисления интеграла. Реализация разобранных алгоритмов на			
	Фортане-90. Исследование эффективности алгоритмов			
13 - 14	интегрального представления функций Бесселя.	Daara		
13 - 14	Тема 7. Разложение функций в ряд по полиномам	2	удиторных 0	
	Лежандра.	_		6
	Функционал среднеквадратичного отклонения и расчет	Онлайн		1.0
	коэффициентов разложения функции в ряд Фурье.	0	0	0
	Алгоритм вычисления полиномов Лежандра по рекурсии.			
	Свойства ортогональности полиномов Лежандра. Формула			
	квадрата нормы полинома. Использование разложения в			
	ряд по полиномам Лежандра для представления			
	индикатрисы рассеяния и для представления угловой			
	зависимости плотности потока нейтронов в Рп – методе			
	решения газокинетического уравнения. Оценка величины			
	нормы ошибки и алгоритмы численного расчета			
	коэффициентов разложения и погрешности представления.			
15 - 16	Тема 8. Аппроксимация функций в методе конечных	Всего а	удиторных	часов
	элементов. Работа с файлами в среде Visual Fortran.	2	0	6
	Интерполяция по Лагранжу. Вывод формул для расчета	Онлайн	I	
	функций – составляющих решения в отдельном конечном	0	0	0
	элементе. Введение глобального вектора решений			
	функции в выбранных узловых точках всей системы.			
	Матрицы перехода от глобального вектора к локальному			
	вектору в заданном конечном элементе. Возможность			
	обеспечения непрерывности решения вдоль всех границ			
	конечных элементов. Использование файлов для ввода и			
	вывода данных. Виды файлов. Операции над внешними			
	файлами.			
	фанлами.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации

T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание			
	9 Семестр			
1 - 4	ЛАБОРАТОРНАЯ РАБОТА №1			
	Оптимальные характеристики реактора с гомогенной активной зоной			
5 - 8	ЛАБОРАТОРНАЯ РАБОТА №2			
	Влияние выравнивания распределения тепловыделения			
9 - 16	ЛАБОРАТОРНАЯ РАБОТА №3			
	Учёт ограничений на запас реактивности на выгорание топлива			

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Презентации, видеоматериалы.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-2.1	3-ПК-2.1	3, КИ-8, КИ-16
	У-ПК-2.1	3, КИ-8, КИ-16
	В-ПК-2.1	3, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно

			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»		по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- $1.\,004\,\Pi 64\,MATLAB\,6$: среда проектирования инженерных приложений : , Потемкин В.Г., Москва: Диалог МИФИ, $2003\,$
- 2. ЭИ М 33 Математические методы системного анализа : учебное пособие для вузов, Матвеев А. И., Санкт-Петербург: Лань, 2021
- 3. ЭИ Γ 65 Методы оптимизации : учебное пособие для вузов, Гончаров В. А., Москва: Юрайт, 2024
- 4. 621.039 Ф50 Физико-технические основы современной ядерной энергетики. Перспективы и экологические аспекты: учебное пособие, Шмелев А.Н. [и др.], Долгопрудный: Интеллект, 2014

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

 $1.\ 004\ H50$ Современный Фортран : самоучитель, Стесик О.Л., Немнюгин С.А., СПб: БХВ-Петербург, 2005

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Темы для самостоятельного изучения:

Базовые факторы поведения человека и их влияние на принятие решений.

Оптимизация влияния человеческого фактора на безопасность ядерных объектов.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

В процессе проведения лабораторных занятий необходимо научить студентов формулировать задачи оптимального проектирования ядерных реакторов и решать их, используя необходимые условия оптимальности и такие численные методы, как: методы безусловной минимизации, проектирования градиентов, штрафных функций и методы линеаризации. Важно, чтобы они понимали особенности этих методов, их область применения и освоили способы получения функциональных производных и расчёта коэффициентов чувствительности функционалов к управляющим параметрам с помощью методов линейной теории возмущений. Особое внимание следует уделить изучению метода линеаризации с использованием алгоритмов линейного программирования.

При организации занятий важное место отводится контролю знаний, включая остаточные знания по моделированию нейтронно-физических процессов. С этой целью задания для контрольной работы (в середине семестра) по расчёту коэффициентов чувствительности полезно формулировать, называя лишь физическую характеристику и приближение, в котором она рассчитывается. Студент должен самостоятельно дать математическую формулировку, используя полученные ранее знания по дисциплине «Физическая теория реакторов» и другим дисциплинам.

Теоретические знания по численным методам решения оптимизационных задач, формулировке и использованию необходимых условий оптимальности проверяются на экзамене. Практические навыки по применению метода линеаризации и моделированию процессов в реакторах формируются при выполнении лабораторного практикума.

Автор(ы):

Сироткин Алексей Михайлович, к.ф.-м.н., доцент