Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ЛАЗЕРНОЙ ФИЗИКИ

ОДОБРЕНО

НТС ИФИБ Протокол №3/2 от 30.08.2021 г.

УМС ИФТИС Протокол №1 от 31.08.2021 г.

НТС ИНТЭЛ Протокол №03/3-21 от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИСТОРИЯ ЛАЗЕРНОЙ ТЕХНИКИ И ЛАЗЕРНЫХ ТЕХНОЛОГИЙ

Направление подготовки (специальность)

[1] 03.03.02 Физика

[2] 15.03.06 Мехатроника и робототехника

[3] 11.03.04 Электроника и наноэлектроника

[4] 12.03.03 Фотоника и оптоинформатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2, 1	1	36	24	0	0		12	0	3
Итого	1	36	24	0	0	0	12	0	

АННОТАЦИЯ

В курсе рассказывается о истории создания мазеров, а потом лазеров. Дано описание фундаментальных основ получения узконаправленного лазерного излучения на основе вынужденного излучения. Описан принцип работы мазеров и лазеров. Далее рассказывается о широком спектре применения современных лазеров - в промышленных и полупроводниковых технологиях, в медицине, в спектроскопии, в детектировании газовых и жидких веществ в технологических средах, в мониторинге атмосферы и др. Перечисляются все ученые, причастные к созданию лазеров в СССР и в США, даются их краткие биографии, рассказывается о том, как они пришли к идее создания лазеров

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения курса «История лазерной техники и лазерных технологий» является освоение истории лазерной техники и лазерных технологий и формирование у студентов осознания пути, пройденного от первого мазера на аммиаке до современных высокоэффективных лазерах, областей их применения, в том числе, в лазерных технологиях

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина логически и содержательно-методически связана со следующими дисциплинами: квантовая радиофизика, физическая оптика, экспериментальная лазерная физика. При составлении программы учебной дисциплины «История лазерной техники и лазерных технологий» предполагалось, что студент знаком с содержанием основных разделов курсов математики и общей физики, желательно также наличие общих базовых представлений из области информатики и вычислительной техники.

Предметом курса является изучение история создания лазеров и лазерной техники, физических основ усиления и генерации света, рассмотрение принципов работы лазеров всех основных типов и областей их применения

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование	Код и наименование индикатора достижения компетенции
компетенции	
УК-2 [1, 2, 3, 4] – Способен	3-УК-2 [1, 2, 3, 4] – Знать: виды ресурсов и ограничений для
определять круг задач в рамках	решения профессиональных задач; основные методы оценки
поставленной цели и выбирать	разных способов решения задач; действующее
оптимальные способы их	законодательство и правовые нормы, регулирующие
решения, исходя из	профессиональную деятельность
действующих правовых норм,	У-УК-2 [1, 2, 3, 4] – Уметь: проводить анализ поставленной
имеющихся ресурсов и	цели и формулировать задачи, которые необходимо решить
ограничений	для ее достижения; анализировать альтернативные варианты
	решений для достижения намеченных результатов;
	использовать нормативно-правовую документацию в сфере

	профессиональной деятельности
	В-УК-2 [1, 2, 3, 4] – Владеть: методиками разработки цели и
	задач проекта; методами оценки потребности в ресурсах,
	продолжительности и стоимости проекта, навыками работы
	с нормативно-правовой документацией
	o nophambio npasoson dokymentadnem
УК-6 [1, 2, 3, 4] – Способен	3-УК-6 [1, 2, 3, 4] – Знать: основные приемы эффективного
управлять своим временем,	управления собственным временем; основные методики
выстраивать и реализовывать	самоконтроля, саморазвития и самообразования на
траекторию саморазвития на	протяжении всей жизни
основе принципов образования в	У-УК-6 [1, 2, 3, 4] – Уметь: эффективно планировать и
течение всей жизни	контролировать собственное время; использовать методы
	саморегуляции, саморазвития и самообучения
	В-УК-6 [1, 2, 3, 4] – Владеть: методами управления
	собственным временем; технологиями приобретения.
	использования и обновления социо-культурных и
	профессиональных знаний, умений, и навыков; методиками
	саморазвития и самообразования в течение всей жизни

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование

воспитательного потенциала
дисциплин "История науки и
инженерии", "Критическое
мышление и основы научной
коммуникации", "Введение в
специальность", "Научно-
исследовательская работа",
"Научный семинар" для:
- формирования способности
отделять настоящие научные
исследования от лженаучных
посредством проведения со
студентами занятий и регулярных
бесед;
- формирования критического
мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	1 Семестр						
1	Первый раздел	1-8			25	КИ-8	3-УК- 2, У- УК-2, В- УК-2, 3-УК- 6, У- УК-6, В- УК-6

_						
2	Второй раздел	9-12		25	КИ-12	3-УК-
						2,
						у-
						УК-2,
						B-
						УК-2,
						3-УК-
						6,
						у <u>-</u>
						УК-6,
						B-
						УК-6
	Итого за 1 Семестр		24/0/0	50		
	Контрольные			50	3	3-УК-
	мероприятия за 1					2,
	Семестр					У-
						УК-2,
						B-
						УК-2,
						3-УК-
						6,
						У-
						УК-6,
						B-
						УК-6

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	1 Семестр	24	0	0
1-8	Первый раздел	16		
1 - 2	Фундаментальные основы лазеров	Всего а	удиторных	часов
	История создания и развития квантовой физики и	4		
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онлайн	I	
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4		
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,			
	инверсная населенность			
3	Первые молекулярные генераторы – мазеры	Всего а	удиторных	часов
	Исторические предпосылки для создания генераторов	2		

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	микроволнового диапазона. Работы Н.Г. Басова, А.М.	Онлай	TT	
	Прохорова и Ч. Таунса. Первый лазер на аммиаке, принцип	2		
	его действия. Другие типы мазеров	2		
4 - 5	Генераторы оптического диапазона – лазеры	Всего	⊥ аудиторны	⊥ х часов
1 5	История перехода от квантовых генераторов	4		Ideob
	микроволнового диапазона к оптическим квантовым	Онлай	 U	
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4		
	Таунса. Первый в мире рубиновый лазер Т. Меймана.	-		
	Принцип его работы			
6 - 8	Современные лазеры	Всего	аудиторны	х часов
	Атомарные газовые лазеры на инертных газах и парах	6		
	металлов, молекулярные газовые лазеры, лазеры на	Онлай	 Н	
	красителях, эксимерные лазеры, твердотельные,	6		
	химические лазеры, лазеры на центрах окраски,			
	химические, полупроводниковые, рентгеновские,			
	волоконные лазеры, лазеры на свободных электронах			
9-12	Второй раздел	8		
9	Лазерные технологии в промышленности и в	Всего	аудиторны	х часов
	полупроводниковых технологиях	2		
	Использование лазеров в технологиях обработки металлов	Онлай	 Н	
	– лазерная сварка, пайка, резка, сверление. Использование	2		
	лазеров в технологических процессах. Полупроводниковые			
	лазерные технологии – очистка поверхности, образование			
	силицдов, осаждение тонких пленок, скрайбирование			
10	Лазерные технологии в медицине	Всего	аудиторны	х часов
	Использование лазеров для диагностики и лечения. Лазеры	2		
	в медицине: стоматология, офтальмология, хирургия.	Онлай	Н	•
	Диагностика и лечение онкоологических заболеваний	2		
11	Лазерный термоядерный синтез	Всего	аудиторны	х часов
	Физические процессы взаимодействия мощного лазерного	2		
	излучения с термоядерным топливом. Модели мишеней.	Онлай	Н	
	Пороговые характеристики параметров мишени и	2		
	лазерного излучения. Сравнение ЛТС с нелазерными			
	методами			
12	Лазерный мониторинг биосферы	Всего	аудиторны	х часов
	Кюветные и дистанционные газоанализаторы.	2		
	Рефрактометрические измерители, использование	Онлай	Н	
	искусственных спутников Земли для контроля атмосферы.	2		
	Использование метода лазерно-возбуждаемой			
	флуоресценции для компонентного анализа атмосферного			
	воздуха. Лидары комбинационного рассеяния	0.4		
1.0	2 Семестр	24	0	0
1-8	Первый раздел	16		1
1 - 2	Фундаментальные основы лазеров		аудиторны	х часов
	История создания и развития квантовой физики и	4		1
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онлай	H	1
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4		
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,			
2	инверсная населенность	D		1
3	Первые молекулярные генераторы – мазеры		аудиторны	х часов
	Исторические предпосылки для создания генераторов	2		1
	микроволнового диапазона. Работы Н.Г. Басова, А.М.	Онлай	Н	

	Прохорова и Ч. Таунса. Первый лазер на аммиаке, принцип	2			
	его действия. Другие типы мазеров	-			
4 - 5	Генераторы оптического диапазона – лазеры	Всего а	аудиторны:	х часов	
	История перехода от квантовых генераторов	4			
	микроволнового диапазона к оптическим квантовым	Онлайі	T		
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4			
	Таунса. Первый в мире рубиновый лазер Т. Меймана.				
	Принцип его работы				
6 - 8	Современные лазеры	Всего а	аудиторны	х часов	
	Атомарные газовые лазеры на инертных газах и парах	6			
	металлов, молекулярные газовые лазеры, лазеры на	Онлайі	H	·	
	красителях, эксимерные лазеры, твердотельные,	6			
	химические лазеры, лазеры на центрах окраски,				
	химические, полупроводниковые, рентгеновские,				
	волоконные лазеры, лазеры на свободных электронах				
9-12	Второй раздел	8			
9	Лазерные технологии в промышленности и в	Всего а	аудиторны	х часов	
	полупроводниковых технологиях	2			
	Использование лазеров в технологиях обработки металлов	Онлайі	H		
	– лазерная сварка, пайка, резка, сверление. Использование	2			
	лазеров в технологических процессах. Полупроводниковые				
	лазерные технологии – очистка поверхности, образование				
	силицдов, осаждение тонких пленок, скрайбирование				
10	Лазерные технологии в медицине	Всего а	аудиторны	х часов	
	Использование лазеров для диагностики и лечения. Лазеры	2			
	в медицине: стоматология, офтальмология, хирургия.	Онлайі	H		
	Диагностика и лечение онкоологических заболеваний	2			
11	Лазерный термоядерный синтез		аудиторны	х часов	
	Физические процессы взаимодействия мощного лазерного	2			
	излучения с термоядерным топливом. Модели мишеней.	Онлайі	H		
	Пороговые характеристики параметров мишени и	2			
	лазерного излучения. Сравнение ЛТС с нелазерными				
10	методами	D			
12	Лазерный мониторинг биосферы		аудиторны:	х часов	
	Кюветные и дистанционные газоанализаторы.	2			
	Рефрактометрические измерители, использование искусственных спутников Земли для контроля атмосферы.	Онлайі	1		
	Использование метода лазерно-возбуждаемой	2			
	флуоресценции для компонентного анализа атмосферного				
	воздуха. Лидары комбинационного рассеяния				
	3 Семестр	24	0	0	
1-8	Первый раздел	16			
1 - 2	Фундаментальные основы лазеров		⊥ аудиторны:	у насов	
1 4	История создания и развития квантовой физики и	4	тудиториы. 	Пасов	
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онлайі	<u> </u>		
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4	.1		
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,	-			
	инверсная населенность				
3	Первые молекулярные генераторы – мазеры	Bcero 2	ц аудиторны:	 х часов	
_	Исторические предпосылки для создания генераторов	2	-, AIII OPIIDI.	14000	
				1	
	- МИКDОВОЛНОВОГО ЛИАПАЗОНА РАООТЫ Н. I. БАСОВА А IVI	()нпяйі	∃		
	микроволнового диапазона. Работы Н.Г. Басова, А.М. Прохорова и Ч. Таунса. Первый лазер на аммиаке, принцип	Онлайі 2	1		

	его действия. Другие типы мазеров			
4 - 5	Генераторы оптического диапазона – лазеры	Всего	⊥ аудиторны	х часов
	История перехода от квантовых генераторов	4		
	микроволнового диапазона к оптическим квантовым	Онлай	 Н	
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4		
	Таунса. Первый в мире рубиновый лазер Т. Меймана.	-		
	Принцип его работы			
6 - 8	Современные лазеры	Всего	⊥ аудиторны	х часов
0 0	Атомарные газовые лазеры на инертных газах и парах	6	<u>аудиторив</u>	Idea
	металлов, молекулярные газовые лазеры, лазеры на	Онлай	 	
	красителях, эксимерные лазеры, твердотельные,	6		
	химические лазеры, лазеры на центрах окраски,	0		
	химические, полупроводниковые, рентгеновские,			
	волоконные лазеры, лазеры на свободных электронах			
9-12	Второй раздел	8		
9	Лазерные технологии в промышленности и в	-	OVERHADORIUS	IV HOOOD
9	полупроводниковых технологиях	2	аудиторны 	
	y -	Онлай		
	Использование лазеров в технологиях обработки металлов – лазерная сварка, пайка, резка, сверление. Использование		<u>H</u>	
		2		
	лазеров в технологических процессах. Полупроводниковые			
	лазерные технологии – очистка поверхности, образование			
10	силицдов, осаждение тонких пленок, скрайбирование	Dagra		
10	Лазерные технологии в медицине		аудиторнь: 	х часов
	Использование лазеров для диагностики и лечения. Лазеры	2		
	в медицине: стоматология, офтальмология, хирургия.	Онлай	H	
	Диагностика и лечение онкоологических заболеваний	2		
11	Лазерный термоядерный синтез		аудиторны	х часов
	Физические процессы взаимодействия мощного лазерного	2		
	излучения с термоядерным топливом. Модели мишеней.	Онлай	H	
	Пороговые характеристики параметров мишени и	2		
	лазерного излучения. Сравнение ЛТС с нелазерными			
	методами			
12	Лазерный мониторинг биосферы	Всего	аудиторны	х часов
	Кюветные и дистанционные газоанализаторы.	2		
	Рефрактометрические измерители, использование	Онлай	Н	
	искусственных спутников Земли для контроля атмосферы.	2		
	Использование метода лазерно-возбуждаемой			
	флуоресценции для компонентного анализа атмосферного			
	воздуха. Лидары комбинационного рассеяния			
	4 Семестр	24	0	0
1-8	Первый раздел	16		
1 - 2	Фундаментальные основы лазеров	Всего	аудиторны	х часов
	История создания и развития квантовой физики и	4		
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онлай	Н	
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4		
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,			
	инверсная населенность			
3	Первые молекулярные генераторы – мазеры	Всего	аудиторнь	х часов
	Исторические предпосылки для создания генераторов	2		
	микроволнового диапазона. Работы Н.Г. Басова, А.М.	Онлай	H	<u> </u>
	Прохорова и Ч. Таунса. Первый лазер на аммиаке, принцип	2		
				1

4 - 5	Генераторы оптического диапазона – лазеры	Всего а	Всего аудиторных часов		
	История перехода от квантовых генераторов	4			
	микроволнового диапазона к оптическим квантовым	Онлайн			
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4			
	Таунса. Первый в мире рубиновый лазер Т. Меймана.				
	Принцип его работы				
6 - 8	Современные лазеры		Всего аудиторных часов		
	Атомарные газовые лазеры на инертных газах и парах	6			
	металлов, молекулярные газовые лазеры, лазеры на	Онлайн			
	красителях, эксимерные лазеры, твердотельные,	6			
	химические лазеры, лазеры на центрах окраски,				
	химические, полупроводниковые, рентгеновские,				
	волоконные лазеры, лазеры на свободных электронах				
9-12	Второй раздел	8			
9	Лазерные технологии в промышленности и в		Всего аудиторных часов		
	полупроводниковых технологиях	2			
	Использование лазеров в технологиях обработки металлов	Онлайн			
	– лазерная сварка, пайка, резка, сверление. Использование	2			
	лазеров в технологических процессах. Полупроводниковые				
	лазерные технологии – очистка поверхности, образование				
	силицдов, осаждение тонких пленок, скрайбирование				
10	Лазерные технологии в медицине		Всего аудиторных часов		
	Использование лазеров для диагностики и лечения. Лазеры	2			
	в медицине: стоматология, офтальмология, хирургия.	Онлайн	H		
	Диагностика и лечение онкоологических заболеваний	2			
11	Лазерный термоядерный синтез		Всего аудиторных часов		
	Физические процессы взаимодействия мощного лазерного	2			
	излучения с термоядерным топливом. Модели мишеней.	Онлайн			
	Пороговые характеристики параметров мишени и	2			
	лазерного излучения. Сравнение ЛТС с нелазерными				
	методами				
12	Лазерный мониторинг биосферы		Всего аудиторных часов		
	Кюветные и дистанционные газоанализаторы.				
	Рефрактометрические измерители, использование	Онлайн	H		
	искусственных спутников Земли для контроля атмосферы.	2			
	Использование метода лазерно-возбуждаемой				
	флуоресценции для компонентного анализа атмосферного				
	воздуха. Лидары комбинационного рассеяния				

Сокращенные наименования онлайн опций:

Обозна	Полное наименование	
чение		
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций, а также самостоятельная работа студентов, заключающаяся в изучении литературы по тематике курса и повторении ранее пройденного материала. Для того чтобы показать современное состояние лазерной техники и лазерных технологий, предусмотрено широкое использование современных научных работ и публикаций по данной теме. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в НИЯУ МИФИ, а также в других московских университетах и институтах

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
УК-2	3-УК-2	3, КИ-8, КИ-12
	У-УК-2	3, КИ-8, КИ-12
	В-УК-2	3, КИ-8, КИ-12
УК-6	3-УК-6	3, КИ-8, КИ-12
	У-УК-6	3, КИ-8, КИ-12
	В-УК-6	3, КИ-8, КИ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

85-89		В	Оценка «хорошо» выставляется	
75-84		С	студенту, если он твёрдо знает	
	1 (21070110)		материал, грамотно и по существу	
70.74	4 – « <i>xopouo</i> »	D	излагает его, не допуская	
70-74			существенных неточностей в ответе	
			на вопрос.	
65-69			Оценка «удовлетворительно»	
		Е	выставляется студенту, если он имеет	
			знания только основного материала,	
	3 — «удовлетворительно»		но не усвоил его деталей, допускает	
60-64			неточности, недостаточно правильные	
			формулировки, нарушения	
			логической последовательности в	
			изложении программного материала.	
		F	Оценка «неудовлетворительно»	
			выставляется студенту, который не	
			знает значительной части	
			программного материала, допускает	
Ниже 60	2 -		существенные ошибки. Как правило,	
Пиже оо	«неудовлетворительно»		оценка «неудовлетворительно»	
			ставится студентам, которые не могут	
			продолжить обучение без	
			дополнительных занятий по	
			соответствующей дисциплине.	

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 18 Введение в квантовую физику: учебное пособие, Санкт-Петербург: Лань, 2021
- 2. ЭИ К 93 Курс общей физики Т. 3 Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц, : , 2019
- 3. ЭИ П 75 Лазеры и экологический мониторинг атмосферы : учебное пособие, Санкт-Петербург: Лань, 2021
- 4. ЭИ Б 82 Лазеры: применения и приложения: учебное пособие, Санкт-Петербург: Лань, 2021
- 5. ЭИ Б 82 Лазеры: устройство и действие: учебное пособие, Санкт-Петербург: Лань, 2021

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 53 С34 Общий курс физики Т.4 Оптика, Москва: Физматлит, 2018
- 2. 535 К 43 Пособие по физике лазеров : , Саров: ФГУП РФЯЦ-ВНИИЭФ, 2020

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В качестве промежуточной оценки успеваемости студентов используются письменные опросы.

В конце курса студенты сдают зачет. К зачету допускаются студенты, прошедшие аттестацию по итогам освоения разделов данного семестра (КИ8 и КИ12). Контроль по итогам (КИ) включает результаты письменных опросов (Т8, Т12). Сдача зачета сводится к ответу на вопросы билета. Каждый билет содержит два вопроса по программе курса.

При изучении курса «История лазерной техники и лазерных технологий» необходимо усвоить, почему лазерная техника и лазерные технологии были бы невозможны без возникновения квантовой физики. Необходимо иметь представление о наиболее важных открытиях в этой области физики, которые в конце концов привели к созданию вначале квантовых генераторов – мазеров, и далее первого лазера.

Нужно понимать принцип действия лазера, в основе которого лежат свойства вынужденного излучения, активной среды, усиливающей распространяющееся в ней электромагнитное излучение, оптического резонатора, превращающего усилитель в квантовый генератор. Необходимо знать основные оптические методы создания инверсной населенности в двухуровневой системе — трех- и четырехуровневые схемы накачки.

Также необходимо знать о современных, наиболее распространенных лазеров и их характеристиках — спектральных диапазонов генерации, механизмах лазерной накачки, режимах генерации, мощностей излучения, областей применения.

Необходимо иметь представление о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно знать основные области применения лазерных систем – в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс решает следующие учебные задачи.

В первой части курса необходимо ознакомить студентов с историей возникновения и развития квантовой физики. Нужно объяснить, как неспособность классической физики теоретически объяснить спектральное распределение энергии излучения черного тела привело М. Планка к идее о том, что излучение электромагнитного поля квантуется по частотам, что считается рождением нового представления о строении вселенной – квантовой физики. Далее

рассказать о планетарной модели атома Э. Резенфорда и о постулатах Бора, что в совокупности подтверждают гипотезу М. Планка еще до появления квантовой механики.

Необходимо рассказать студентам о важнейшей роли А. Эйнштейна в развитии квантовой физики — его предположение о существовании вынужденного излучения позволило не только вывести формулу Планка для спектрального распределения плотности энергии излучения черного тела и получить выражение для коэффициента поглощения в двухуровневой системе, но и положило основу принципов работы лазеров, поскольку именно вынужденное излучение в среде с инверсной населенностью при наличии оптического резонатора и является излучением лазера.

Далее необходимо перейти к роли В.А. Фабриканта в дальнейшее развитие теории лазера, который предложил метод прямого экспериментального доказательства существования вынужденного излучения и при этом был первым, кто обратил внимание на принципиальную возможность создания среды, не ослабляющей, а усиливающей проходящее через нее излучение.

Необходимо рассказать о первой экспериментальной реализации накопленной к 50-м годам 20-го века теоретической базе — создании мазеров на аммиаке Н.Г. Басовым, М.А. Прохоровым в СССР и Ч. Таунсом в США, излучающих в микроволновом спектральном диапазоне. Нужно рассказать студентам о принципах работе мазеров, их конструкции, характерных мощностях генерации.

После этого следует перейти к идее «перенести» излучение из микроволнового диапазона в оптический, то есть к идее о создании лазеров. За разработку теоретических основ лазера Н.Г. Басов, М.А. Прохоров и Ч. Таунс в 1964 году получили Нобелевские премии по физике. Необходимо рассказать студентом об экспериментах Т. Меймана, который впервые в 1964 году получил излучение лазера, в котором в качестве активной среды использовался рубиновый лазер. Следует рассказать о классических оптических методах создания инверсной населенности – трех- и четырехуровневых схемах накачки.

В следующем разделе необходимо рассказать о дальнейшем развитии лазерной техники, о современных лазерах и дальнейших тенденций развития. Необходимо провести классификацию лазеров по различным параметрам – агрегатному состоянию активной среды, методам лазерной накачки, спектральному диапазону излучения, режимам генерации. При рассказе о конкретных лазеров дать студентам качественное представление о методах получения инверсной населенности, рассказать о режимах работы лазеров, мощностях лазерного излучения.

В заключительном разделе курса необходимо рассказать студентам о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно охватить ряд основных областей применения лазеров — в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

Курс решает следующие учебные задачи.

В первой части курса необходимо ознакомить студентов с историей возникновения и развития квантовой физики. Нужно объяснить, как неспособность классической физики теоретически объяснить спектральное распределение энергии излучения черного тела привело М. Планка к идее о том, что излучение электромагнитного поля квантуется по частотам, что считается рождением нового представления о строении вселенной – квантовой физики. Далее рассказать о планетарной модели атома Э. Резенфорда и о постулатах Бора, что в совокупности подтверждают гипотезу М. Планка еще до появления квантовой механики.

Необходимо рассказать студентам о важнейшей роли А. Эйнштейна в развитии квантовой физики — его предположение о существовании вынужденного излучения позволило не только вывести формулу Планка для спектрального распределения плотности энергии излучения черного тела и получить выражение для коэффициента поглощения в двухуровневой системе, но и положило основу принципов работы лазеров, поскольку именно вынужденное излучение в среде с инверсной населенностью при наличии оптического резонатора и является излучением лазера.

Далее необходимо перейти к роли В.А. Фабриканта в дальнейшее развитие теории лазера, который предложил метод прямого экспериментального доказательства существования вынужденного излучения и при этом был первым, кто обратил внимание на принципиальную возможность создания среды, не ослабляющей, а усиливающей проходящее через нее излучение.

Необходимо рассказать о первой экспериментальной реализации накопленной к 50-м годам 20-го века теоретической базе — создании мазеров на аммиаке Н.Г. Басовым, М.А. Прохоровым в СССР и Ч. Таунсом в США, излучающих в микроволновом спектральном диапазоне. Нужно рассказать студентам о принципах работе мазеров, их конструкции, характерных мощностях генерации.

После этого следует перейти к идее «перенести» излучение из микроволнового диапазона в оптический, то есть к идее о создании лазеров. За разработку теоретических основ лазера Н.Г. Басов, М.А. Прохоров и Ч. Таунс в 1964 году получили Нобелевские премии по физике. Необходимо рассказать студентом об экспериментах Т. Меймана, который впервые в 1964 году получил излучение лазера, в котором в качестве активной среды использовался рубиновый лазер. Следует рассказать о классических оптических методах создания инверсной населенности – трех- и четырехуровневых схемах накачки.

В следующем разделе необходимо рассказать о дальнейшем развитии лазерной техники, о современных лазерах и дальнейших тенденций развития. Необходимо провести классификацию лазеров по различным параметрам – агрегатному состоянию активной среды, методам лазерной накачки, спектральному диапазону излучения, режимам генерации. При рассказе о конкретных лазеров дать студентам качественное представление о методах получения инверсной населенности, рассказать о режимах работы лазеров, мощностях лазерного излучения.

В заключительном разделе курса необходимо рассказать студентам о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно охватить ряд основных областей применения лазеров — в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

Автор(ы):

Шнырев Сергей Львович, д.ф.-м.н., доцент

Рецензент(ы):

Гончуков Сергей Александрович