Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФИЗИКИ МИКРО- И НАНОСИСТЕМ

Направление подготовки (специальность)

[1] 11.04.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	2	72	25	0	0		47	0	3
Итого	2	72	25	0	0	20	47	0	

АННОТАЦИЯ

Учебная задача курса «Современные проблемы физики микро- и наносистем» дать основные представления о физических процессах, происходящих в микро- и наносистемах различной размерности.

В курсе «Современные проблемы физики микро- и наносистем» рассматривается влияние квантоворазмерных эффектов на энергетических спектр носителей заряда, оптические и теплофизические свойства полупроводниковых и металлических микро- и наноструктур. Дается представление о современных методах создания, характеризации и исследования микро- и наносистем, при этом особое внимание уделяется практическому использованию уникальных свойств нанообъектов.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Современные проблемы физики микро- и наносистем» является получение знаний, необходимых для успешной профессиональной деятельности в области исследований, разработок и технологий, направленных на создание функционализированных нано- и микрообъектов, понимание процессов, происходящих в области нанофотоники, физики нанообъектов и конденсированного состояния вещества и управление процессами на наноуровне.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Профессиональный модуль, дисциплина по выбору

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
H	аучно-исследовательсь	сий	
разработка рабочих планов и программ проведения научных исследований и	Материалы, компоненты, электронные приборы,	ПК-1 [1] - способен формулировать цели и задачи научных исследований в	3-ПК-1[1] - Знать: современное состояние, тенденции и перспективы
технических	устройства,	соответствии с	развития электроники,

разработок, подготовка отдельных заданий для исполнителей

установки, методы их исследования, проектирования и конструирования. Технологические процессы производства, диагностическое и технологическое оборудование, математические модели, алгоритмы решения типовых задач в области электроники и наноэлектроники. Современное программное и информационное обеспечение процессов моделирования и проектирования изделий электроники и наноэлектроники. Инновационные технические решения в сфере базовых постулатов проектирования, технологии изготовления и применения электронных приборов и устройств.

тенденциями и перспективами развития электроники и наноэлектроники, а также смежных областей науки и техники, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач

Основание: Профессиональный стандарт: 40.011 наноэлектроники и смежных областей науки и техники.; У-ПК-1[1] - Уметь: формулировать цели и задачи научных исследований в соответствии с тенденциями и перспективами развития электроники, наноэлектроники, физики конденсированных сред и других смежных областей науки и техники; В-ПК-1[1] - Владеть: навыками обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач в области электроники и наноэлектроники

организация и проведение экспериментальных исследований, технологических и измерительных операций, необходимых для создания и изучения свойств материалов, элементной базы и приборов электроники и наноэлектроники устройств. Материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования. Технологические процессы производства, диагностическое и технологическое оборудование,

ПК-4 [1] - способен к организации и проведению экспериментальных исследований с применением современных средств и методов

Основание: Профессиональный стандарт: 40.011

3-ПК-4[1] - Знать: современные экспериментальные методы в области физики конденсированного состояния, электроники и наноэлектроники ; У-ПК-4[1] - Уметь: проводить экспериментальные исследования в электронике и наноэлектронике с

математические	применением
модели, алгоритмы	современных средств
решения типовых	и методов.;
задач в области	В-ПК-4[1] - Владеть:
электроники и	компьютерными
наноэлектроники.	технологиями в
Современное	применении к
программное и	экспериментальным
информационное	исследованиям в
обеспечение	электронике и
процессов	наноэлектронике
моделирования и	
проектирования	
изделий	
электроники и	
наноэлектроники.	
Инновационные	
технические	
решения в сфере	
базовых постулатов	
проектирования,	
технологии	
изготовления и	
применения	
электронных	
приборов и	
устройств.	

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	3 Семестр						
1	Современные наноматериалы	1-8	13/0/0		25	КИ-8	3-ПК- 1, У- ПК-1, В- ПК-1
2	Квантовые точки и их применение	9-16	12/0/0		25	КИ-16	3-ПК- 4, У- ПК-4, В- ПК-4

Итого за 3 Семестр	25/0/0	50		
Контрольные мероприятия за 3 Семестр	25/0/0	50	3	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 4, У-
				ПК-4, В- ПК-4

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование		
чение			
КИ	Контроль по итогам		
3	Зачет		

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	3 Семестр	25	0	0
1-8	Современные наноматериалы	13	0	0
1 - 2	Тема 1	Всего а	аудиторных	часов
	Углеродные наноструктуры. Углеродные нанотрубки	1	0	0
	(УНТ), строение, получение, свойства.	Онлайі	H	1
		0	0	0
2 - 3	Тема 2	Всего а	аудиторных	часов
	Базовые представления о энергетической структуре	1	0	0
	органических соединений. Метод ЛКАО. Кулоновский и	Онлайн		
	резонансный интегралы. Система π-электронов	0	0	0
	ненасыщенных углеводородов. Особенности метода ЛКАО			
	для полимеров.			
3 - 4	Тема 3	Всего а	аудиторных	часов
	Дисперсионного выражения для энергии электрона E(k)	1	0	0
	для УНТ типа седло и кресло.	Онлайі	H	
		0	0	0
4 - 5	Тема 4	Всего а	аудиторных	часов
	Графен. Структура. Способы получения. Вид E(k),	2	0	0
	особенности в точках К и К' первой зоны Бриллюэна.	Онлайн		
		0	0	0
5 - 6	Тема 5	Всего а	аудиторных	часов
	Фуллерены, строение получение, свойства.	2	0	0

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		Онлайі	H	
		0	0	0
6	Тема 6	Всего а	аудиторных	часов
	Пористый кремний (ПК). Классификация. Методы	2	0	0
	получения. Спрямление зонной структуры ПК.	Онлайн	H	
	Фотолюминесценция ПК.	0	0	0
6 - 7	Тема 7	Всего а	аудиторных	часов
	Понятие фотонного кристалла. Область применения.	2	0	0
	Аналогия между уравнением Шредингера и основным	Онлайн	H	
	уравнением теории дифракции. Понятие фотонной	0	0	0
	запрещенной зоны. Фотонные структуры на базе ПК.			
7 - 8	Тема 8	Всего а	удиторных	часов
	Матричный метод в оптике многослойных структур.	2	0	0
	Матрица передачи и матрица рассеяния.	Онлайн	H	
		0	0	0
9-16	Квантовые точки и их применение	12	0	0
9 - 10	Тема 9	Всего а	аудиторных	часов
	Одномерная брэгговская решетка и мирокрезонатор на	3	0	0
	основе ПК. Основные формулы. Аналогия между задачей о	Онлайн	Ŧ	
	прохождении излучения через решетку Брэгга и задачей	0	0	0
	Кронига-Пенни.			
11 - 12	Тема 10		аудиторных	
	Механизмы переноса энергии в наносистемах. Примеры	3	0	0
	переноса энергии для систем на базе ПК.	Онлайн		
		0	0	0
13 - 14	Тема 11	Всего а	аудиторных	часов
	Коллоидные полупроводниковые наночастицы.	3	0	0
	Технология синтеза. Оптические свойства, энергетический	Онлайн	Ŧ	
	спектр. Применение полупроводниковых наночастиц в оптоэлектронике.	0	0	0
15 - 16	Тема 12	Всего а	удиторных	часов
	Основы наноплазмоники.	3	0	0
		Онлайн	I	
		0	0	0

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении лекций используются наглядны формы демонстрации учебного материала в виде презентаций, а также выступление приглашенных сотрудников кафедры физики микро- и наносистем и других подразделений НИЯУ МИФИ, занимающихся исследованиями в области физики микро- и наносистем. Студенты в обязательном порядке посещают лекции ведущих мировых ученых выступающих в НИЯУ МИФИ с лекциями на тему физики наносистем. Проведение семинаров предусматривает проведение дискуссий и выступления студентов с докладами на темы связанные с физикой и технологией ноносистем.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	3, КИ-8
	У-ПК-1	3, КИ-8
	В-ПК-1	3, КИ-8
ПК-4	3-ПК-4	3, КИ-16
	У-ПК-4	3, КИ-16
	В-ПК-4	3, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	1	С	студенту, если он твёрдо знает
70-74	4 – «хорошо»		материал, грамотно и по существу
		D	излагает его, не допуская
/0-/4		ן ט	существенных неточностей в ответе
			на вопрос.

65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»	E	неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
			Оценка «неудовлетворительно»
	2 — «неудовлетворительно»	F	выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60			существенные ошибки. Как правило,
Пиже оо			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 49 Наноплазмоника:, Москва: Физматлит, 2010
- 2. ЭИ И 26 Оптоэлектроника и нанофотоника : учебное пособие, Санкт-Петербург: Лань, 2020
- 3. 53 М43 Современные проблемы физики и технологий Ч.1, Москва: НИЯУ МИФИ, 2019
- 4. ЭИ Ш 18 Физика полупроводников: учебное пособие, Санкт-Петербург: Лань, 2022
- 5. 537 3-43 Принципы лазеров: , О. Звелто, Санкт-Петербург [и др.]: Лань, 2008
- 6. 620 Д93 Углеродные нанотрубки : строение, свойства, применения, П. Н. Дьячков, Москва: Бином. Лаборатория знаний, 2006

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 541.5 Т88 Молекулярная фотохимия: , Н. Турро, Москва: Мир, 1967
- 2. 539.2 К45 Введение в физику твердого тела:, Ч. Киттель, М.: МедиаСтар, 2006

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса «Современные проблемы физики микро- и наносистем» студент должен освоить основные знания о строении, энергетической структуре и оптических свойствах полупроводниковых, органических и металлических нано- и микроструктур, а также иметь представление о методах создания наноструктур и областях их практического применения.

Темы курса знакомят студентов с конкретными классами нанообъектов и специфическими свойствами.

По завершению изучения данных тем студент должен:

- познакомиться с классом углеродных наноструктур,
- иметь четкое представление о структуре УНТ, фуллеренов и графена, методах их получения и областях практического применения,
- знать определение молекулярной орбитали и основных приближений положенных в основу метода ЛКАО,
 - овладеть основами расчета энергетической структуры УНТ различной хиральности,
- познакомиться с понятием пористых наноструктур в частности с пористым кремнием (ПК),
- усвоить основные свойства ПК, иметь четкое представление о методах его изготовления и природе его люминесценции,
 - усвоить понятия фотонного кристалла, Брэгговской решетки и микрорезонатора,
- обратить особое внимание на понимание таких понятий как запрещенная фотоная зона и плотность фотонных состояний,
- с практической точки зрения студент должен освоить методы расчет отражения и пропускания многослойной структуры с использованием метода матрицы передачи,
 - усвоить понятия излучательного и безызлучательного переноса энергии,
- понимать природу и условия протекания механизмов переноса энергии по Ферстеру и по Декстеру,
 - знать примеры практического использования перечисленных явлений,
- иметь четкое представление о методах получения коллоидных полупроводниковых квантовых точек (КТ) их структуре и энергетическом спектре,
- уметь оценивать длину волны излучения КТ, зная их размер и вещество из которого они синтезированы,
 - знать примеры практического применения КТ,
 - иметь четкое представление о явлении плазмонного резонанса,
- знать классификацию плазмонов и иметь четкое представление об оптических свойствах металлических нанокристаллов.

В качестве самостоятельной работы студент должен:

- решать задачи предложенные преподавателем.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Преподаватель должен использовать знания студентов в области органической химии, при этом следует обратить их внимание на новую более глубокую интерпретацию понятий гибридизации и молекулярной орбитали. При рассмотрении метода ЛКАО следует обратить внимание студентов на его аналогию с методом сильной связи в физике твердого тела. Следует обратить внимание студентов на широкие возможности использования пористых сред для построения сенсорных систем. Необходимо использовать знания студентов из курса оптики и физики твердого тела. Также следует обратить особое внимание на такие понятия как запрещенная фотоная зона и плотность фотонных состояний. Следует подробно рассказать принцип диполь дипольного взаимодействия и на основе этого прейти к изложению механизмам Ферстера. При рассмотрении механизма Декстера обратить внимание на возможность изменения спина электрона. Рассказывая о коллоидных квантовых точках (КТ) обратить внимание студентов на простоту метода их синтеза и комплементарность технологий создания пленок из КТ с технологиями создания пленок органических полимеров.

При изложении темы плазмонного резонанса обязательно привести классификацию плазмонов, после чего отдельное внимание уделить локализованным плазмонам и их оптическим свойствам. Подчеркнуть, что в отличии от спектра электронов в квантовых точках спектра плазмонов в металлических наночастицах слабо зависит от их размера.

Автор(ы):

Чистяков Александр Александрович, д.ф.-м.н., с.н.с.