Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФОТОФИЗИКА АТОМОВ И МОЛЕКУЛ

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	32	16	0		33	0	Э
8	2	72	8	24	0		13	0	Э
Итого	5	180	40	40	0	0	46	0	

АННОТАЦИЯ

Учебный курс дать основные представления о строении атомов и молекул, о современных методах спектроскопии и их применении в смежных областях, физике твердого тела, нанофотонике и т.п.

Учебная дисциплина состоит из следующих основных частей: теория строения атома водорода, строение многоэлектронного атома, основы теории радиационных переходов, основы общей систематики сложных спектров и характерные спектры многоэлектронных атомов, спектроскопия многоступенчатого возбуждения атомов.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является получение знаний, необходимых для успешной профессиональной деятельности в области исследований, разработок и технологий, направленных на регистрацию и обработку спектральной информации, создание и применение установок и систем в области нанофотоники, физики нанообъектов и конденсированного состояния вешества.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Профессиональный модуль, дисциплина по выбору

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исс	ледовательский	
математическое	электронные	ПК-8.1 [1] - Способен	3-ПК-8.1[1] - законы и
моделирование	приборы,	применять методы и	экспериментальные
электронных приборов,	устройства,	концепции	методы физики
схем и устройств	установки, методы	экспериментальной	конденсированного
различного	их исследования,	физики	состояния вещества,
функционального	математические	конденсированного	лазерной физики,
назначения на базе	модели	состояния вещества,	физики микро- и
стандартных пакетов		лазерной физики,	наносистем, принципы

автоматизированного проектирования; участие в планировании и проведении экспериментов по заданной методике, обработка результатов с применением современных информационных технологий и технических средств; анализ научнотехнической информации, отечественного и зарубежного опыта по тематике исследования; участие в подготовке и подаче заявок по перспективным проектам, грантам в рамках проводимых открытых конкурсов

фотоники, физики микро- и наносистем для решения технических, технологических и функциональных проблем при создании и эксплуатации элементов и устройств, функционирующих на принципах наноэлектроники и нанофотоники

Основание: Профессиональный стандарт: 40.011

функционирования элементов и устройств фотоники и оптоэлектроники; У-ПК-8.1[1] анализировать научнотехническую проблему, поставленную задачу в области нанофотоники, физики конденсированного состояния вещества, физики наноструктур, используя отечественный и зарубежный опыт, а также предлагать возможные пути ее решения; В-ПК-8.1[1] навыками экспериментальной работы на специализированном научном оборудовании и устройствах в области фотоники, физики наноструктур, лазерной физики, оптои наноэлектроники, математического моделирования процессов и объектов применительно к поставленной задаче 3-ПК-10.1[1] - законы

математическое моделирование электронных приборов, схем и устройств различного функционального назначения на базе стандартных пакетов автоматизированного проектирования; участие в планировании и проведении экспериментов по заданной методике, обработка результатов

электронные приборы, устройства, установки, методы их исследования, математические модели

ПК-10.1 [1] - Способен применять методы и концепции экспериментальной физики конденсированного состояния вещества, лазерной физики, фотоники, физики микро- и наносистем для решения технических, технологических и функциональных проблем при создании и эксплуатации

3-ПК-10.1[1] - законы и экспериментальные методы физики конденсированного состояния вещества, лазерной физики, физики микро- и наносистем, принципы функционирования элементов и устройств фотоники и оптоэлектроники; У-ПК-10.1[1] - анализировать научнотехническую проблему,

с применением элементов и устройств, поставленную задачу в функционирующих на области нанофотоники, современных информационных принципах физики технологий и наноэлектроники и конденсированного нанофотоники технических средств; состояния вещества, анализ научнофизики наноструктур, технической Основание: используя Профессиональный информации, отечественный и отечественного и стандарт: 40.011 зарубежный опыт, а зарубежного опыта по также предлагать тематике исследования; возможные пути ее участие в подготовке и решения; В-ПК-10.1[1] подаче заявок по перспективным навыками проектам, грантам в экспериментальной рамках проводимых работы на открытых конкурсов специализированном научном оборудовании и устройствах в области фотоники, физики наноструктур, лазерной физики, оптои наноэлектроники, математического моделирования процессов и объектов применительно к поставленной задаче анализ научноэлектронные ПК-3 [1] - Способен 3-ПК-3[1] - Знание технической приборы, анализировать и законов информации, устройства, систематизировать статистической отечественного и установки, методы результаты физики; У-ПК-3[1] - Умение зарубежного опыта по их исследования, исследований, определять степень находить научную тематике исследования; методы участие в достоверности информацию в базах представления данных, выполнять её планировании и научных результатов проведении результатов, экспериментальных анализ и экспериментов по исследований, результаты систематизацию, заданной методике, исследований сопоставлять представлять обработка результатов полученные результаты своих с применением результаты с мировым исследований в виде современных уровнем, представлять докладов, отчётов и информационных материалы в виде публикаций.; В-ПК-3[1] - Владение технологий и научных отчетов, публикаций, технических средств; методами обработки презентаций, баз результатов измерений подготовка и составление обзоров, ланных рефератов, отчетов, научных публикаций, Основание: Профессиональный подготовка и представление устных стандарт: 01.001, 40.011 докладов на научных

	+	
конференциях,		
подготовка и		
представление		
стендовых докладов на		
научных		
конференциях,		
аргументированная		
защита научной		
позиции при докладах		
на семинарах,		
проведение занятий по		
тематике научных		
исследований со		
студентами младших		
курсов с применением		
цифровых		
образовательных		
ресурсов и на основе		
современных		
информационных		
технологий		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное и	Создание условий,	Использование воспитательного
трудовое воспитание	обеспечивающих, формирование культуры исследовательской и инженерной деятельности (В16)	потенциала дисциплин "Основы конструирования и САПР", "Курсовой проект: основы конструирования и САПР", "Инженерная и компьютерная графика", "Детали машин и основы конструирования" для формирования навыков владения эвристическими методами поиска и выбора технических решений в условиях неопределенности через специальные задания (методики ТРИЗ, морфологический анализ, мозговой штурм и др.), культуры инженераразработчика через организацию проектной, в том числе самостоятельной работы обучающихся с использованием программных пакетов.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства	профессионального модуля для
	личной ответственности за	формирования чувства личной
	научно-технологическое	ответственности за достижение
	развитие России, за	лидерства России в ведущих научно-
	результаты исследований и	технических секторах и

	их последствия (В17)	фундаментальных исследованиях, обеспечивающих ее экономическое развитие и внешнюю безопасность, посредством контекстного обучения, обсуждения социальной и практической значимости результатов научных исследований и технологических разработок. 2.Использование воспитательного потенциала дисциплин профессионального модуля для формирования социальной ответственности ученого за результаты исследований и их последствия, развития исследовательских качеств посредством выполнения учебноисследовательских заданий, ориентированных на изучение и проверку научных фактов, критический анализ публикаций в профессиональной области, вовлечения в реальные междисциплинарные научноисследовательские проекты.
Профессиональное воспитание	Создание условий, обеспечивающих,	Использование воспитательного потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное развитие	профессиональное развитие
	и профессиональные	посредством выбора студентами
	решения (В18)	индивидуальных образовательных
		траекторий, организации системы
		общения между всеми участниками
		образовательного процесса, в том
		числе с использованием новых
		информационных технологий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины 7 Семестр	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
1	Основы молекулярной спектроскопии. КРС, теория симметрии, вращательные спектры.	1-6	16/8/0		25	КИ-8	3-ПК-3, У-ПК-3, В-ПК-3
2	Электронно- колебательная спектроскопия многоатомных молекул.	7-12	16/8/0		25	КИ-12	3-ПК-8.1, У-ПК-8.1, В-ПК-8.1, 3-ПК-10.1, У-ПК-10.1, В-ПК-10.1
	Итого за 7 Семестр Контрольные мероприятия за 7 Семестр		32/16/0		50	Э	3-ПК-10.1, У-ПК-10.1, В-ПК-10.1, 3-ПК-3, У-ПК-3, В-ПК-3,
	9 Canada						3-ПК-8.1, У-ПК-8.1, В-ПК-8.1
1	8 Семестр Первый раздел	1-8	4/12/0		25	КИ-8	3-ПК-3, У-ПК-3, В-ПК-3
2	Второй раздел	9-15	4/12/0		25	КИ-15	3-ПК-8.1, У-ПК-8.1, В-ПК-8.1
	Итого за 8 Семестр		8/24/0		50		
	Контрольные мероприятия за 8 Семестр				50	Э	3-ПК-3, У-ПК-3, В-ПК-3, 3-ПК-8.1, У-ПК-8.1, В-ПК-8.1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение Полное наименование

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
	7.0.	час.	час.	час.
1.7	7 Семестр	32	16	0
1-6	Основы молекулярной спектроскопии. КРС, теория	16	8	0
1 0	симметрии, вращательные спектры.	D		
1 - 2	Тема 1		аудиторных	1
	Основные положения квантовомеханической теории	4	2	0
	молекул. Порядок величин электронной, колебательной и	Онлайі	Ŧ	1
	вращательной энергии. Принцип Борна Оппенгеймера.	0	0	0
	Отделение колебаний от вращения. Радиационные			
	переходы, электронные колебательные и вращательные			
	спектры. Интенсивности в спектрах.			
3	Тема 2	Всего а	аудиторных	часов
	Основы теории комбинационного рассеяния света.	4	2	0
	Колебательное и вращательное комбинационное	Онлайн		
	рассеяние света. Характеристики переходов и	0	0	0
	интенсивности в случае спектров комбинационного			
	рассеяния. Вынужденное комбинационное рассеяние			
	света. Понятие о когерентном актистоксовом рассеянии			
	света. И гигантском комбинационном рассеянии.			
4	Тема 3	Всего а	аудиторных	часов
	Основы теории симметрии. Понятие точной группы	4	2	0
	Точечные группы низшей, средней и высшей симметрии.	Онлайі	H	
	Свойства симметрии равновесных конфигураций	0	0	0
	молекул.			
	Понятие о представлениях групп, непреводимые			
	представления точечных групп. Связь компонентов			
	дипольного момента и тензора поляризуемости с			
	симметрией молекул. Правила отбора по симметрии.			
5 - 6	Тема 4	Всего а	аудиторных	часов
	Вращательные спектры молекул. Вращательные уровни и	4	2	0
	вращательные переходы линейных молекул. Правила	Онлайі	H	
	отбора, интенсивности вращательных спектров и	0	0	0
	заселенности вращательных уровней для линейных			
	молекул. Вращательные уровни молекул типа			
	сферического волчка.			
	Молекулы типа симметричного и ассиметричного волчка.			
	Момент инерции и вращательные постоянные.			
	Вращательные уровни и вращательные переходы для			
	молекул типа ассиметричного волчка. Правила отбора и			
	интенсивности в спектрах.			
7-12	Электронно-колебательная спектроскопия	16	8	0
	многоатомных молекул.			
7 - 8	Тема 5	Всего	ц худиторных	Часов
, 0	Колебательные спектры молекул. Гармонические и	6	тудиториых 2	0
	1 toneoutenbribe energible moneragn. I apmoninaectic in	U	4	U

	ангармонические колебания двухатомных молекул.	Онлай	<u></u> Н	
	Интенсивности в спектрах испускания, поглощения и	0	0	0
	комбинационного рассеяния, правила отбора.			
	Колебательно-вращательные спектры двухатомных			
	молекул.			
	Потенциальная энергия многоатомных молекул.			
	Естественные и нормальные координаты. Ангармонизм			
	колебаний многоатомных молекул. Обертона и составные			
	частоты. Симметрия колебаний многоатомных молекул,			
	координаты симметрии. Правила отбора для			
	радиационных колебательных переходов и			
	комбинационного рассеяния в многоатомных молекулах.			
	Резонанс Ферми. Методы колебательной спектроскопии			
	для исследования наноструктур. Понятие о релаксации			
	колебательного возбуждения молекул. Многофотонное			
	возбуждение и диссоциация молекул.			
9 - 10	Тема 6	Всего	ц аудиторны	х часов
7 10	Электронные состояния и спектры двухатомных молекул.	5	3	0
	Устойчивые и неустойчивые (разлетные) состояния,	Онлай	_	1 ~
	химическая связь. Характеристика состояний отдельных электронов. Связывающие и антисвязывающие		0	0
	молекулярные электроны и химическая связь.			
	Электронные состояния и химическая связь в ионе			
	молекул водорода. Электронные состояния и химическая			
	связь в молекуле водорода. Метод молекулярных			
	орбиталей и электронных пар. Колебательная структура			
	спектров двухатомных молекул. Принцип Франца-			
	Кондона и относительная интенсивность электронно-			
	колебательных полос. Понятие о фотодиссоциации и			
	предиссоциации молекул. Вращательная структура			
	электронно-колебательных полос.			
11 - 12	Тема 7	Всего	аудиторны	х часов
	Электронные состояния и спектры многоатомных	5	3	0
	молекул. Электронные состояния и химическая связь	Онлай	H	L
	многоатомных молекул. Теорема Яна-Теллера. Принцип	0	0	0
	Франка-Кондона для многоатомных молекул. Правила			
	отбора. Диаграмма Яблонского. Внутренняя и			
	интеркомбинационная конверсия в многоатомных			
	молекулах. Флюоресценция и фосфоресценция.			
	Многоступенчатое возбуждение и диссоциация			
	многоатомных молекул. Понятие о лазерах на растворах			
	органических красителей. Понятие об электронных			
	спектрах наночастиц и молекулярных кластеров.			
	8 Семестр	8	24	0
1-8	Первый раздел	4	12	0
1 - 2	Тема 1	Всего	аудиторны	х часов
	Роль спектроскопии в современной физике твердого тела,	1	3	0
	физике наноструктур и нанофотонике.	Онлай	H	· I
		0	0	0
3 - 4	Тема 2		аудиторны	
	Основы теории радиационных переходов. Спонтанные и	1	3	0
	индуцированные переходы. Вероятности переходов,	Онлай		_ I =
	I — I — L — L	- IIIIuri	••	

	сечения поглощения и вынужденного испускания.	0	0	0
	Правила отбора. Экспериментальные методы изучения			
	атомарных спектров.			
5 - 6	Тема 3	Всего	аудиторных	часов
	Атом водорода. Уравнение Шредингера для атома	1	3	0
	водорода. Распределение электронной плотности для	Онлай	H	•
	состояний атома водорода. Тонкая структура спектров	0	0	0
	атома водорода. Спин-орбитальное взаимодействие.			
	Сверхтонкое расщепление. Лэмбовский сдвиг.			
7 - 8	Тема 4	Всего	аудиторных	часов
	Искусственные атомы, квантовые точки. Энергетические	1	3	0
	уровни типичных квантовых точек. Спектры	Онлай	H	
	поглощения и люминесценции. Систематика спектров	0	0	0
	полупроводниковых квантовых точек.			
9-15	Второй раздел	4	12	0
9 - 10	Тема 5	Всего	аудиторных	часов
	Спектры многоэлектронных атомов. Приближение	1	3	0
	центрального поля. Систематика состояний электронов в	Онлай	Н	
	центральном поле. Оболочечная модель атома и границы	0	0	0
	ее применимости. Электростатическое расщепление.			
	Понятие спектрального терма. Тонкая структура терма.			
	Приближение LS- и jj –связи.			
11 - 12	Тема 6	Всего	аудиторных	часов
	Спектры атомов с оболочкой ns и ns2. Спектры щелочных	1	3	0
	и щелочноземельных элементов. Атом гелия. Сериальные	Онлай	Н	
	закономерности. Тонкая структура. Интенсивности	0	0	0
	спектральных линий. Спектры атомов меди, серебра,			
	золота и ртути. Лазер на парах меди и золота.			
13 - 14	Тема 7	Всего	аудиторных	
	Спектры атомов с заполняющимися и заполненными р-,	1	3	0
	d- и f-оболочками. Термы основных и возбужденных	Онлай	H	
	электронных конфигураций. Тонкая структура термов,	0	0	0
	интенсивности спектральных линий.			
15 - 16	Тема 8	Всего	аудиторных	часов
	Возбужденные атомы. Метастабильные атомы в газовых	1	3	0
	лазерах. Многоступенчатое селективное фотовозбуждение	Онлай	Н	
	и фотоионизация атомов. Применение многоступенчатой	0	0	0
	селективной фотоионизация для разделения изотопов и в			
	элементном анализе.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
, ,	7 Семестр
1 - 2	Тема 1
	Основные положения квантовомеханической теории молекул. Порядок величин
	электронной, колебательной и вращательной энергии. Принцип Борна Оппенгеймера.
	Отделение колебаний от вращения. Радиационные переходы, электронные
	колебательные и вращательные спектры. Интенсивности в спектрах.
3	Тема 2
	Основы теории комбинационного рассеяния света. Колебательное и вращательное
	комбинационное рассеяние света. Характеристики переходов и интенсивности в
	случае спектров комбинационного рассеяния. Вынужденное комбинационное
	рассеяние света. Понятие о когерентном актистоксовом рассеянии света. И
	гигантском комбинационном рассеянии.
4	Тема 3
	Основы теории симметрии. Понятие точной группы Точечные группы низшей,
	средней и высшей симметрии. Свойства симметрии равновесных конфигураций
	молекул. Понятие о представлениях групп, непреводимые представления точечных
	групп. Связь компонентов дипольного момента и тензора поляризуемости с
	симметрией молекул. Правила отбора по симметрии.
5 - 6	Тема 4
	Вращательные спектры молекул. Вращательные уровни и вращательные переходы
	линейных молекул. Правила отбора, интенсивности вращательных спектров и
	заселенности вращательных уровней для линейных молекул. Вращательные уровни
	молекул типа сферического волчка.
	Молекулы типа симметричного и ассиметричного волчка. Момент инерции и
	вращательные постоянные. Вращательные уровни и вращательные переходы для
	молекул типа ассиметричного волчка. Правила отбора и интенсивности в спектрах.
7 - 8	Тема 5
	Колебательные спектры молекул. Гармонические и ангармонические колебания
	двухатомных молекул. Интенсивности в спектрах испускания, поглощения и
	комбинационного рассеяния, правила отбора. Колебательно-вращательные спектры
	двухатомных молекул.
	Потенциальная энергия многоатомных молекул. Естественные и нормальные
	координаты. Ангармонизм колебаний многоатомных молекул. Обертона и составные
	частоты. Симметрия колебаний многоатомных молекул, координаты симметрии.
	Правила отбора для радиационных колебательных переходов и комбинационного
	рассеяния в многоатомных молекулах. Резонанс Ферми. Методы колебательной
	спектроскопии для исследования наноструктур. Понятие о релаксации
	колебательного возбуждения молекул. Многофотонное возбуждение и диссоциация
	молекул.
9 - 10	Тема 6
	Электронные состояния и спектры двухатомных молекул. Устойчивые и
	неустойчивые (разлетные) состояния, химическая связь. Характеристика состояний
	отдельных электронов. Связывающие и антисвязывающие молекулярные электроны и
	химическая связь. Электронные состояния и химическая связь в ионе молекул
	водорода. Электронные состояния и химическая связь в молекуле водорода. Метод
	молекулярных орбиталей и электронных пар. Колебательная структура спектров
	двухатомных молекул. Принцип Франца-Кондона и относительная интенсивность
	электронно-колебательных полос. Понятие о фотодиссоциации и предиссоциации

 11 - 12 Тема 7 Электронные состояния и спектры многоатомных молекул. Электронные состояния и химическая связь многоатомных молекул. Торема Яна-Теллера. Припцип Франка-Кондона для многоатомных молекул. Правила отбора. Диаграмма Яблонского. Внутренняя и интеркомбинационная конверсия в многоатомных молекулах. Флюоресценция и фосфоресценция. Многоступенчатое воздуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных спектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1		молекул. Вращательная структура электронно-колебательных полос
Электропные состояния и спектры многоатомных молекул. Электронные состояния и химическая связь многоатомных молекул. Теорема Яна-Теплера. Принцип Франка-Кондона для многоатомных молекул. Правила отбора. Диаграмма Яблопского. Внутренняя и интеркомбинационная конверсия в многоатомных молекулах. Флюоресценция и фосфоресценция. Многоступенчатое возбуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных спектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое распцепление. Лямбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границые е применимости. Электростатическое распцепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј –связи. 11 - 12 Тема 6 Спектры атомов с оболочкой па и пs2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов,	11 - 12	
Кондона для многоатомных молекул. Правила отбора. Диаграмма Яблонского. Внутренняя и интеркомбинационная конверсия в многоатомных молекулах. Флюоресценция и фосфоресценция. Многоступенчатое возбуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных спектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и выпужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвит. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Топкая структура терма. Приближение LS- и јј -связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пя и пя2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	11-12	Электронные состояния и спектры многоатомных молекул. Электронные состояния и
Внутренняя и интеркомбинационная конверсия в многоатомных молекулах. Флюоресценция и фосфоресценция. Многоступенчатое возбуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных епектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтопкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы се применимости. Электростатическое распепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј -связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
Олюоресценция и фосфоресценция. Многоступенчатое возбуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных спектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расцепление. Лэмбовский едвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 7 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных епектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и выпужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектральното терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пь и вз2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
Понятие об электронных спектрах наночастиц и молекулярных кластеров. 8 Семестр 1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и напофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 7 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
1 - 2 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
 Тема 1 Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расшепление. Лэмбовский едвиг. Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj −связи. Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Роль спектроскопии в современной физике твердого тела, физике наноструктур и нанофотонике. 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский едвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3	1 - 2	
 3 - 4 Тема 2 Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвит. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Основы теории радиационных переходов. Спонтанные и индуцированные переходы. Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 7 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		1
Вероятности переходов, сечения поглощения и вынужденного испускания. Правила отбора. Экспериментальные методы изучения атомарных спектро 7 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 7 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	3 - 4	
 отбора. Экспериментальные методы изучения атомарных спектро 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4		
 5 - 6 Тема 3 Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Атом водорода. Уравнение Шредингера для атома водорода. Распределение электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
электронной плотности для состояний атома водорода. Тонкая структура спектров атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	5 - 6	
атома водорода. Спин-орбитальное взаимодействие. Сверхтонкое расщепление. Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртуги. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
 Лэмбовский сдвиг. 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj −связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
 7 - 8 Тема 4 Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Искусственные атомы, квантовые точки. Энергетические уровни типичных квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj –связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	7. 0	
квантовых точек. Спектры поглощения и люминесценции. Систематика спектров полупроводниковых квантовых точек. 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболоченная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	7 - 8	
Полупроводниковых квантовых точек.		
 9 - 10 Тема 5 Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и јј —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Спектры многоэлектронных атомов. Приближение центрального поля. Систематика состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	0 10	
состояний электронов в центральном поле. Оболочечная модель атома и границы ее применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj –связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	9 - 10	
применимости. Электростатическое расщепление. Понятие спектрального терма. Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
Тонкая структура терма. Приближение LS- и jj —связи. 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
 11 - 12 Тема 6 Спектры атомов с оболочкой пѕ и пѕ2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий. 		
Спектры атомов с оболочкой ns и ns2. Спектры щелочных и щелочноземельных элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	11 _ 12	
элементов. Атом гелия. Сериальные закономерности. Тонкая структура. Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	11 12	
Интенсивности спектральных линий. Спектры атомов меди, серебра, золота и ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
ртути. Лазер на парах меди и золота. 13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
13 - 14 Тема 7 Спектры атомов с заполняющимися и заполненными р- , d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
Спектры атомов с заполняющимися и заполненными p-, d- и f-оболочками. Термы основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.	13 - 14	
основных и возбужденных электронных конфигураций. Тонкая структура термов, интенсивности спектральных линий.		
интенсивности спектральных линий.		
	15 - 16	Тема 8
Возбужденные атомы. Метастабильные атомы в газовых лазерах. Многоступенчатое		
селективное фотовозбуждение и фотоионизация атомов. Применение		
многоступенчатой селективной фотоионизация для разделения изотопов и в		
элементном анализе.		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Используются современные предметно- и личностно-ориентированные образовательные технологии

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы	Аттестационное	Аттестационное
	освоения	мероприятие (КП 1)	мероприятие (КП 2)
ПК-3	3-ПК-3	Э, КИ-8	Э, КИ-8
	У-ПК-3	Э, КИ-8	Э, КИ-8
	В-ПК-3	Э, КИ-8	Э, КИ-8
ПК-8.1	3-ПК-8.1	Э, КИ-12	Э, КИ-15
	У-ПК-8.1	Э, КИ-12	Э, КИ-15
	В-ПК-8.1	Э, КИ-12	Э, КИ-15
ПК-10.1	3-ПК-10.1	Э, КИ-12	
	У-ПК-10.1	Э, КИ-12	
	В-ПК-10.1	Э, КИ-12	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 –	F	Оценка «неудовлетворительно»

«неудовлетворительно»	выставляется студенту, который не знает
	значительной части программного
	материала, допускает существенные
	ошибки. Как правило, оценка
	«неудовлетворительно» ставится
	студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. If T35 Astronomical spectroscopy: an Introduction to the atomic and molecular physics of astronomical spectra, Tennyson J., New Jersey [and oth.]: World scientific, 2011
- 2. ЭИ C21 Carbon Nanoparticles and Nanostructures : , , Cham: Springer International Publishing, 2016
- 3. ЭИ Ш77 Атомная и молекулярная спектроскопия:, Шнырёв С.Л., [Москва]: [МИФИ], 2008
- 4. 539.1 Е59 Атомная и молекулярная спектроскопия : общие вопросы спектроскопиипособие для вузов, Ельяшевич М.А., Москва: Либроком, 2011
- 5. 539.1 Е59 Атомная и молекулярная спектроскопия. Атомная спектроскопия : , Ельяшевич М.А., Москва: Либроком, 2009
- 6. 539.1 E59 Атомная и молекулярная спектроскопия. Молекулярная спектроскопия: , Ельяшевич М.А., Москва: Либроком, 2009

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 539.2 Г82 Колебания молекул: , Грибов Л.А., Москва: Либроком, 2009

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Демонстрационный проектор

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса студент должен твердо усвоить основные представления о строении атомов и молекул, о современных методах спектроскопии и их применении в смежных областях, физике твердого тела, нанофотонике и т.п.

Студент должен твердо усвоить физические механизмы тонкого расщепления, а также квантово-механические принципы его расчета. Он должен уметь связать эти знания с представлениями об атоме водорода, полученными из курса общей физики и квантовой механики. В качестве самостоятельной работы студен должен повторить раздел «Атом водорода» из курса общей физики и квантовой механики, а также квантово-механическую теорию возмущений из курса теоретической физики.

Студент должен понять физические принципы электростатического расщепления и уметь провести его расчет для двухэлектронного атома с помощью квантово-механической теории возмущений. В качестве самостоятельной работы должен решать задачи по определению атомарного терма, исходя из оболочечной модели, а также задачи на определение величины электростатического расщепления.

Студент должен твердо усвоить элементарные атомарные фотопроцессы и взаимосвязь между ними. Понять общие принципы формирования правил отбора исходя из законов сохранения и симметрии атомных систем. В качестве самостоятельной работы – повторить нестационарную квантово-механическую теорию возмущений, повторить теорию излучения Планка.

Студент должен уметь свободно определять сериальные закономерности для «легкого атома» исходя из понятия терма и правил отбора. Должен уметь вычислять отношения интенсивностей в спектрах для типичных случаев. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Многоступенчатое возбуждение атома. Студент должен твердо усвоить понятие насыщения перехода и уметь делать оценки для лазерной интенсивности насыщения перехода. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При изложении атома водорода необходимо учитывать, что основные понятия студенту известны из курсов общей и теоретической физики. Поэтому следует обратить внимание на рассмотрение вопросов спин-орбитального взаимодействия, а также зависимости энергии атома от массы электрона. Важно продемонстрировать применение квантово-механической теории возмущений для расчета соответствующих поправок к энергии атома. При рассмотрении сдвига Лэмба обычно не хватает времени для изложении как теории, так и эксперимента. Преподаватель должен выбрать: можно продемонстрировать квантово-механический расчет сдвига, а можно сосредоточиться на эксперименте. В первом случае необходимо объяснить, хотя бы качественно, общие принципы квантования электромагнитного поля. Студенты выносят из курса общей физики несколько искаженное представление о терме. Следует подробно объяснить зависимость электростатического расщепления от суммарного спина и суммарного орбитального момента. Первое можно сделать на примере двухэлектронного атома (атома гелия). Важно дать понятия о коэффициентах Эйнштейна и об их взаимосвязи, а также дать квантово-механический вывод вероятности радиационного перехода и объяснить студентам, что такое матричный элемент оператора дипольного момента и его связь с

вероятностью радиационного перехода. Ключевой вопрос этого раздела — правила отбора. Чтобы избежать формального усвоения правил отбора, необходимо объяснить их физическую природу, обусловленную элементарным процессом взаимодействия фотона с атомом. Можно дать понятие о насыщении перехода. Для объяснения типичных спектров атомов различных периодов периодической таблицы, следует активно использовать: понятие спектрального терма, правила отбора, оболочечную модель, теорию тонкого расщепления и т.п. Удобно продемонстрировать некоторые основные принципы спектроскопии многоэлектронного атома на примере работы некоторых атомных и ионных лазеров - таких, как лазер на парах меди и золота, иодный лазер, гелий-неоновый лазер.

При рассмотрении многоступенчатого возбуждения атомов необходимо использовать понятие насыщения перехода. При этом студенты должны уметь самостоятельно сделать оценки для интенсивности лазерного излучения, требуемой для эффективной многоступенчатой ионизации. В этом разделе необходимо дать понятие о технологии лазерного разделения изотопов, а также аналитических методах детектирования атомарных примесей в конденсированных средах.

Автор(ы):

Чистяков Александр Александрович, д.ф.-м.н., с.н.с.