МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ ПОДГОТОВКА КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

УТВЕРЖДАЮ Первый проректор О.В. Нагорнов «31» августа 2023 г.

Программа одобрена НТС ЛАПЛАЗ. Протокол 1/08-577от 31.08.2023 Протокол №1/12-577 от 19.12.2022 Протокол № 3 от 30.08.2021 Протокол № 577/08 от 31.08.2020

ХАРАКТЕРИСТАКА ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ. КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ ВЫПУСКНИКА

ПРОГРАММА ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

Направление подготовки 01.06.01 Математика и механика

Программа подготовки:

Дифференциальные уравнения, динамические системы и оптимальное управление

Научная специальность:

1.1.2. Дифференциальные уравнения и математическая физика

Квалификация (степень) ИССЛЕДОВАТЕЛЬ. ПРЕПОДАВАТЕЛЬ-ИССЛЕДОВАТЕЛЬ

Срок обучения: 4 года Форма обучения: очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре.

Основная профессиональная образовательная программа высшего образования – программа подготовки научно-педагогических кадров аспирантуре по направлению подготовки кадров высшей квалификации аспирантуре 01.06.01 Математика механика, направленность «Дифференциальные уравнения, динамические системы и оптимальное управление» (далее – образовательная программа НИЯУ МИФИ) представляет собой совокупность документов, содержащих общую характеристику, объем, содержание, планируемых результатов освоения, организационно-педагогических условий и форм в соответствии с приказом № 1259 Минобрнауки и самостоятельно устанавливаемым образовательным стандартом, утвержденному Ученым советом НИЯУ МИФИ (Протокол № 14/04 от 18.03.2014 г.), с изменениями дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 14/07 от 29.08.2014 г.), с изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 15/04 от 02.06.2015 г.), изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 16/04 от 16.05.2016), паспорта научной специальности.

Образовательная программа НИЯУ МИФИ разработана на основании положений статей 2 п.7 и 11 п. 10 Федерального закона от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации», а также в соответствии с требованиями международных стандартов инженерного образования Всемирной инициативы СПО и лучших практик отечественных и зарубежных университетов, основными положениями Болонской декларации, требованиями профессионально-общественной, в том числе международной аккредитации образовательных программ (FEANI и др.), требованиями стандарта ГОСТ ISO 9001-2011, требованиями профессиональных отраслевых стандартов, требованиями работодателей.

1.2. Нормативная регламентация образовательной программы.

Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации в аспирантуре разработана с учетом:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (в действующей редакции);
- Федерального государственного образовательного стандарта по направлению подготовки 01.06.01 «Математика и механика», утверждённого приказом Минобрнауки России от 30.07.2014 № 866 (в действующей редакции);

- Образовательного стандарта НИЯУМИФИ (ОС НИЯУ МИФИ) по направлению подготовки 01.06.01 «Математика и механика» по уровню высшего образования подготовки кадров высшей квалификации, утвержденный Ученым советом университета Протокол №14/04 от 18.03.2014 (далее ОС НИЯУ МИФИ) (в действующей редакции);
- Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования—программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), утвержденного приказом Минобрнауки России от 19.11.2013 №1259 (в действующей редакции);
- Порядка приема на обучение по образовательным программам высшего образования –программам подготовки научно-педагогических кадров в аспирантуре, утвержденного приказом Минобрнауки России от 26 марта 2014 года № 233 (в действующей редакции);
- Положения о практике обучающихся, осваивающих основные профессиональные образовательные программы высшего образования, утвержденного приказом Минобрнауки России от 27.11.2015 №1383;
- Порядка проведения государственной итоговой аттестации по образовательным программам высшего образования программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), программам ординатуры, программам ассистентуры-стажировки, утвержденного приказом Минобрнауки России от 18.03.2016 № 227;
- Положения о практической подготовке обучающихся, утвержденного приказом Министерства науки и высшего образования РФ и Министерства просвещения РФ от5 августа 2020 г. № 885/390.
 - иными локальными актами НИЯУ МИФИ.

1.3. Перечень сокращений

ФГОС ВО – федеральный государственный образовательный стандарт высшего образования;

ОС НИЯУ МИФИ –образовательный стандарт НИЯУМИФИ.

з.е. – зачетная единица;

УК – универсальная компетенция;

УСК – универсальная собственная компетенция;

ОПК – общепрофессиональная компетенция:

ОСПК – общепрофессиональная собственная компетенция;

ПК – профессиональная компетенция:

ПСК – профессиональная собственная компетенция

2. ЦЕЛИ И ЗАДАЧИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ АСПИРАНТУРЫ

2.1. Целью образовательной программы аспирантуры является создание аспирантам условий для приобретения необходимого для осуществления профессиональной деятельности уровня знаний, умений, навыков, опыта

деятельности и подготовки к защите научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.

- **2.2.** Основными задачами образовательной программы аспирантуры являются:
- формирование человека и гражданина, являющегося высокопрофессиональным членом общества, ориентированными на его развитие и совершенствование;
- удовлетворение образовательных потребностей и интересов обучающихся с учетом его способностей;
 - владение технологией научного познания;
- формирование профессиональной готовности к самостоятельной научно-исследовательской и педагогической деятельности;
- формирование умений и навыков использования информационных технологий в научно- исследовательской и педагогической деятельности;
 - совершенствование иностранного языка для профессиональной деятельности;
 - получение квалификации «Исследователь. Преподаватель-исследователь».

3. ОБЪЕМ ПРОГРАММЫ, ФОРМА И НОРМАТИВНЫЙ СРОК ОБУЧЕНИЯ

- **3.1.** Объем программы аспирантуры составляет 240 зачетных единиц вне зависимости от формы обучения, применяемых образовательных технологий, реализации программы аспирантуры с использованием сетевой формы, реализации программы аспирантуры по индивидуальному учебному плану, в том числе при ускоренном обучении.
 - **3.2.** Форма обучения

Форма обучения - очная

- 3.3. Срок получения образования по программе аспирантуры:
- в очной форме обучения, включая каникулы, предоставляемые после прохождения государственной итоговой аттестации, вне зависимости от применяемых образовательных технологий, составляет 4 года.
- **3.4.** Перечень предприятий для прохождения практики и трудоустройства выпускников:
 - профильные предприятия государственной корпорации РОСАТОМ;
 - научно-исследовательские институты Российской академии наук;
 - академические и научно-исследовательские организации наукоемких отраслей экономики Российской Федерации.

4. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ, ОСВОИВШИХ ПРОГРАММУ АСПИРАНТУРЫ

4.1. Область профессиональной деятельности выпускников по программе аспирантуры «Дифференциальные уравнения, динамические системы и

оптимальное управление» включает:

- в научно-производственной сфере наукоемкие высокотехнологичные производства оборонной промышленности, аэрокосмического комплекса, авиастроения, машиностроения, проектирования и создания новых материалов, строительства, научно-исследовательские и аналитические центры разного профиля,
- в социально-экономической сфере фонды, страховые и управляющие компании, финансовые организации и бизнес-структуры, а также образовательные организации высшего образования.

Предметная область деятельности выпускников:

- Общая теория дифференциальных уравнений и систем дифференциальных уравнений.
- Начальные, краевые и смешанные задачи для дифференциальных уравнений и систем дифференциальных уравнений.
- Спектральные задачи для дифференциальных операторов.
- Качественная теория дифференциальных уравнений и систем дифференциальных уравнений.
- Аналитическая теория дифференциальных уравнений.
- Теория псевдодифференциальных операторов.
- Теория дифференциально-операторных уравнений.
- Теория функционально-дифференциальных уравнений и нелокальных краевых задач.
- Асимптотическая теория дифференциальных уравнений и систем.
- Теория дифференциальных включений и вариационных неравенств.
- Теория управления дифференциальными уравнениями и системами: вопросы управляемости, наблюдаемости, задачи стабилизации посредством управления с обратной связью.
- **4.2.** Объектами профессиональной деятельности выпускников по программе аспирантуры «Дифференциальные уравнения, динамические системы и оптимальное управление» являются:
 - понятия, гипотезы, теоремы, физико-математические модели, численные алгоритмы и программы
 - методы экспериментального исследования свойств материалов и природных явлений, физико-химических процессов, составляющие содержание фундаментальной и прикладной математики, механики и других естественных наук
 - аналитические решения нелинейных обыкновенных дифференциальных уравнений
 - уравнений в частных производных и уравнений математической физики
 - математические модели задач оптимального управления и методы их решения.
 - нелинейные дифференциальные уравнения и системы нелинейных дифференциальных уравнений
 - динамические системы, дифференциальные уравнения на многообразиях

- дифференциальные уравнения и системы дифференциальных уравнений в задачах оптимального управления и вариационного исчисления.
- **4.3. Виды профессиональной деятельности**, к которым готовятся выпускники аспирантуры по программе аспирантуры «Дифференциальные уравнения, динамические системы и оптимальное управление»:
 - научно-исследовательская и инновационная деятельность в области фундаментальной и прикладной математики, механики, естественных наук;
 - преподавательская деятельность в области математики, механики, информатики.

Образовательная программа высшего образования — программа аспирантуры направлена на освоение всех видов профессиональной деятельности, к которым готовится выпускник, а также предполагает применение в учебном процессе дистанционных технологий и онлайн-образование.

4.4. Задачи профессиональной деятельности выпускников по программе аспирантуры «Дифференциальные уравнения, динамические системы и оптимальное управление»

- 4.4.1. Научно-исследовательская и инновационная деятельность в области:
 - решение математических проблем механики частиц и систем.
 - решение математических проблем механики сплошной среды.
 - решение математических проблем жидкости и газа.
 - решение математических проблем электродинамики.
 - решение математических проблем квантовой теории.
 - решение математических проблем ермодинамики, кинетики и статистической физики.
 - решение математических проблем теории относительности, гравитации и астрофизики.
 - разработка конкретных методов научных исследований
 - проведение измерений с использование современных научных комплексов.
 - анализ и обобщение результатов научного исследования на основе современных междисциплинарных подходов;
 - подготовка научных результатов к представлению на научных семинарах, конференциях, редактирование научных публикаций;
- использование в исследовательской практике современного программного обеспечения.
- 4.4.2. Преподавательская деятельность:
 - проведение учебных занятий со студентами по тематике научного исследования;
 - разработка учебно-методических материалов для работы со студентами

- применение современных информационно-коммуникационных технологий в учебном процессе;
- передача своих знания учащимся ВУЗов;
- овладение навыками самообразования и современными методиками преподавания специальных научных дисциплин.

5. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ. КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ

В результате освоения образовательной программы «Дифференциальные уравнения, динамические системы и оптимальное управление» в рамках направления подготовки 01.06.01 «Математика и механика» должны быть сформированы следующие компетенции:

Ŋoౖ	Код компетенции	Содержание компетенции		
І. УНИВЕРСАЛЬНЫЕ КОМПЕТЕНЦИИ				
1	УК-1	способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях		
2	УК-2	способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки		
3	УК-3	готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач		
4	УК-4	готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках		
5	УК-5	способность планировать и решать задачи собственного профессионального и личностного развития		
6	УСК-1	готовность руководить коллективом в сфере своей профессиональной деятельности, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия		
7	УСК-2	способность самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе, в новых областях знаний, непосредственно не связанных со сферой деятельности, расширять и углублять своё научное мировоззрение		
8	УСК-3	способность использовать и применять углубленные знания в области прикладной математики и информатики		
9	УСК-4	способность оформлять свои научные результаты в виде публикаций, тезисов докладов, научных отчетов и презентаций с использованием систем компьютерной верстки и пакетов офисных		

		программ		
ІІ. ОБЩЕПРОФЕССИОНАЛЬНЫЕ КОМПЕТЕНЦИИ				
10	ОПК-1	способностью самостоятельно осуществлять научно- исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий		
11	ОПК-2	готовностью к преподавательской деятельности по основным образовательным программам высшего образования		
12	ОСПК-1	способность к преподаванию математических дисциплин в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования		
13	ОСПК-2	способность ставить задачи и руководить учебно – исследовательскими и выпускными работами студентов бакалавриата и магистратуры		
14	ОСПК-3	способностью разрабатывать аналитические обзоры состояния области прикладной математики и механики		
15	ОСПК-4	способность использовать профессиональные информационные ресурсы, включая базы данных научного цитирования Elibrary, Web of Science, Scopus, при планировании и оформлении результатов научных исследований		
III. ПРОФЕССИОНАЛЬНЫЕ КОМПЕТЕНЦИИ				
16	ПК-1	способностью самостоятельно осваивать, создавать и использовать новые математические понятия, гипотезы, теоремы, физикоматематические модели и численные алгоритмы и программы, в том числе для исследований в физических и в других естественных науках		
17	ПК-2	способностью самостоятельно исследовать свойства и создавать алгоритмы численных решений задач для обыкновенных дифференциальных уравнений и уравнений математической физики		
18	ПК-3	способностью самостоятельно применять математический инструментарий дифференциальных уравнений для описания и исследования свойств физических и других процессов и объектов		

6. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ АСПИРАНТУРЫ

6.1. Материально-техническое обеспечение образовательного процесса

НИЯУ МИФИ располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской деятельности обучающихся, предусмотренных учебным планом.

Материально-технические условия реализации ООП соответствуют требованиям ФГОС. Помещения, предназначены для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных

консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Специальные помещения кафедры Прикладной математики укомплектованы компьютерами и программными комплексами для проведения численных расчетов и численных экспериментов в рамках учебного процесса, включая НИР аспирантов, том числе, при работе по диссертационной тематике. Кафедра Прикладной математики располагает следующим оборудованием, предназначенным для реализации образовательного процесса аспирантов:

Для реализации специальных дисциплин из специального лицензионного ПО на кафедре имеются следующие:

- 1. Waterloo Maple 13
- 2. Waterloo Maple 17
- 3. MATLAB Version 7.10.0.499 (R2010a)

с набором пакетов:

1. Simulink	Version 7.5 (R2010a)
2. MATLAB Builder NE	Version 3.1 (R2010a)
3. MATLAB Compiler	Version 4.13 (R2010a)
4. Optimization Toolbox	Version 5.0 (R2010a)
5. Partial Differential Equation Toolbox	Version 1.0.16 (R2010a)
6. Spline Toolbox	Version 3.3.8 (R2010a)
7 Symbolic Math Toolbox	Version 5.4 (R2010a)

Для реализации практик на кафедре имеются следующее вычислительное оборудование:

- 1. Компьютеры перс. Сист. блок USN Busines 512 E5300/Cool/2GDDR800/320Gb/DVD+RW/FDD/KBs/Mo/400W/CARE3 3 штуки;
- 2. Ноутбуки Acer Aspire E1-571G-52454G50Mnks i5 2450DM/4Gb/500Gb/DVDRW/GT620M 1Gb/15.6"/HD/WiFi/W7HB64/С 3 штуки.

6.2. Учебно-методическое обеспечение

НИЯУ МИФИ располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской деятельности обучающихся, предусмотренных учебным планом.

аспирант Каждый В течение всего периода обучения обеспечен индивидуальным неограниченным доступом нескольким электроннобиблиотечным системам (электронным библиотекам) электронной И информационно-образовательной среде НИЯУ МИФИ.

Электронно-библиотечная система (электронная библиотека) и электронная информационно-образовательная среда обеспечивают возможность доступа обучающегося из любой точки, в которой имеется доступ к информационнотелекоммуникационной сети "Интернет" (далее — сеть "Интернет"), и отвечающая техническим требованиям организации как на территории НИЯУ МИФИ, так и вне его.

Электронная информационно-образовательная среда организации обеспечивает:

- доступ к учебным планам, рабочим программам дисциплин (модулей), практик и к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочих программах;
- фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения основной образовательной программы;
- проведение всех видов занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;
- формирование электронного портфолио аспиранта, в том числе сохранение работ аспиранта, рецензий и оценок на эти работы со стороны любых участников образовательного процесса;
- взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети "Интернет".

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих.

Функционирование электронной информационно-образовательной среды соответствует законодательству Российской Федерации

7. ОРГАНИЗАЦИИ-РАБОТОДАТЕЛИ / ЗАКАЗЧИКИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень организаций-работодателей/заказчиков образовательной программы:

- Институт прикладной математики им. М.В. Келдыша РАН
- Объединенный институт ядерных исследований (ОИЯИ г. Дубна)

8. УЧЕБНЫЙ ПЛАН, КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК, РАБОЧИЕ ПРОГРАММЫ И ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИН, ПРОГРАММЫ ПРАКТИК, ПРОГРАММА И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ.

Документы, указанные в п.8, являются неотъемлемой частью данной ОПОП и прилагаются в указанном порядке.

Составитель программы: д.ф.-м.н., профессор Крянев А.В.

Представитель организации-работодателя/заказчика образовательной программы: д.ф.-м.н., гл. н. с. ОИЯИ Иванов В.В.