Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

АТОМНЫЕ И МОЛЕКУЛЯРНЫЕ ФОТОПРОЦЕССЫ (ЧАСТЬ 2)

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	2-3	72-108	12	24	0		9-36	0	Э
Итого	2-3	72-108	12	24	0	0	9-36	0	

АННОТАЦИЯ

Изучение дисциплины дает основные представления о строении атомов и молекул, о современных методах спектроскопии и их применении в смежных областях, физике твердого тела, нанофотонике и т.п.

Курс состоит из следующих основных частей: основы молекулярной спектроскопии, электронно-колебательная спектроскопия многоатомных молекул.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является получение знаний, необходимых для успешной профессиональной деятельности в области исследований, разработок и технологий, направленных на регистрацию и обработку спектральной информации, создание и применение установок и систем в области нанофотоники, физики нанообъектов и конденсированного состояния вешества

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для успешного освоения дисциплины необходимо прослушать курс общей физики, в части квантовой оптики, физики атомного ядра, а также изучить курс квантовой механики и предшествующий курс "Атомные и молекулярные фотопроцессы (часть 1)". Дисциплина необходима студентам для понимания строения сложных атомов и молекул с учетом электростатического и спин-орбитального взаимодействия, а также для последующего изучения фотоники органических и неорганических наноструктур

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
--------------------------------	--

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

/ 1 1	, ,		
Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-ис	сследовательский	
Анализ научно-	Материалы,	ПК-3 [1] - Способен	3-ПК-3[1] - Знание
технической	компоненты,	анализировать и	законов
информации,	электронные	систематизировать	статистической
отечественного и	приборы,	результаты	физики;
зарубежного опыта по	устройства,	исследований,	У-ПК-3[1] - Умение

тематике	установки, методы	определять степень	находить научную
исследования	их исследования,	достоверности	информацию в базах
исследования	•	результатов	данных, выполнять её
	проектирования и	* *	·
	конструирования.	экспериментальных	анализ и
	Технологические	исследований,	систематизацию,
	процессы	сопоставлять	представлять
	производства,	полученные результаты	результаты своих
	диагностическое и	с мировым уровнем,	исследований в виде
	технологическое	представлять	докладов, отчётов и
	оборудование,	материалы в виде	публикаций.;
	математические	научных отчетов,	В-ПК-3[1] - Владение
	модели, алгоритмы	публикаций,	методами обработки
	решения типовых	презентаций, баз	результатов
	задач в области	данных	измерений
	электроники и		
	наноэлектроники.	Основание:	
	Современное	Профессиональный	
	программное и	стандарт: 40.011	
	информационное	, , 1	
	обеспечение		
	процессов		
	моделирования и		
	проектирования		
	изделий		
	электроники и		
	наноэлектроники.		
	Инновационные		
	технические		
	решения в сфере		
	базовых постулатов		
	проектирования,		
	технологии		
	изготовления и		
	применения		
	электронных		
	приборов и		
	устройств.		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное и	Создание условий,	Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин "Основы
	формирование культуры	конструирования и САПР",
	исследовательской и	"Курсовой проект: основы
	инженерной деятельности (В16)	конструирования и САПР",
		"Инженерная и компьютерная
		графика", "Детали машин и
		основы конструирования" для
		формирования навыков владения
		эвристическими методами поиска

Профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	и выбора технических решений в условиях неопределенности через специальные задания (методики ТРИЗ, морфологический анализ, мозговой штурм и др.), культуры инженера-разработчика через организацию проектной, в том числе самостоятельной работы обучающихся с использованием программных пакетов. 1. Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2. Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий. Использование воспитательного потенциала дисциплин
воспитание	обеспечивающих, формирование культуры информационной безопасности (B23)	потенциала дисциплин профессионального модуля для формирование базовых навыков информационной безопасности через изучение последствий

халатного отношения к работе с
информационными системами,
базами данных (включая
персональные данные), приемах и
методах злоумышленников,
потенциальном уроне
пользователям.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
1	8 Семестр Основы молекулярной спектроскопии. КРС, теория симметрии, вращательные спектры.	1-8	6/12/0		25	КИ-8	3-ПК-3, У-ПК-3, В-ПК-3
2	Электронно- колебательная спектроскопия многоатомных молекул.	9-12	6/12/0		25	КИ-12	3-ПК-3, У-ПК-3, В-ПК-3
	Итого за 8 Семестр		12/24/0		50		
	Контрольные мероприятия за 8 Семестр				50	Э	3-ПК-3, У-ПК-3, В-ПК-3

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	8 Семестр	12	24	0
1-8	Основы молекулярной спектроскопии. КРС, теория	6	12	0
	симметрии, вращательные спектры.			
1 - 2	Тема 1	Всего а	аудиторных	часов
	Основные положения квантовомеханической теории	2	3	0
	молекул. Порядок величин электронной, колебательной и	Онлайі	H	
	вращательной энергии. Принцип Борна Оппенгеймера.	0	0	0
	Отделение колебаний от вращения. Радиационные			
	переходы, электронные колебательные и вращательные			
	спектры. Интенсивности в спектрах.			
3	Тема 2	Всего а	аудиторных	часов
	Основы теории комбинационного рассеяния света.	2	3	0
	Колебательное и вращательное комбинационное	Онлайі	H	
	рассеяние света. Характеристики переходов и	0	0	0
	интенсивности в случае спектров комбинационного			
	рассеяния. Вынужденное комбинационное рассеяние			
	света. Понятие о когерентном актистоксовом рассеянии			
	света. И гигантском комбинационном рассеянии.			
4	Тема 3	Всего а	аудиторных	часов
	Основы теории симметрии. Понятие точной группы	1	3	0
	Точечные группы низшей, средней и высшей симметрии.	Онлайн	H	1
	Свойства симметрии равновесных конфигураций	0	0	0
	молекул.			
	Понятие о представлениях групп, непреводимые			
	представления точечных групп. Связь компонентов			
	дипольного момента и тензора поляризуемости с			
	симметрией молекул. Правила отбора по симметрии.			
5 - 6	Тема 4	Всего а	аудиторных	часов
	Вращательные спектры молекул. Вращательные уровни и	1 3 0		
	вращательные переходы линейных молекул. Правила	Онлайі		
	отбора, интенсивности вращательных спектров и	0	0	0
	заселенности вращательных уровней для линейных			
	молекул. Вращательные уровни молекул типа			
	сферического волчка.			
	Молекулы типа симметричного и ассиметричного волчка.			
	Момент инерции и вращательные постоянные.			
	Вращательные уровни и вращательные переходы для			
	молекул типа ассиметричного волчка. Правила отбора и			
	интенсивности в спектрах.			
9-12	Электронно-колебательная спектроскопия	6	12	0
/ 12	многоатомных молекул.		12	
7 - 8	Тема 5	Всего	ц Зудиторных	Часов
, 0	Колебательные спектры молекул. Гармонические и	2	<u>19Диториыл</u> 4	0
	ангармонические колебания двухатомных молекул.	2 Онлайн	L -	10
	Интенсивности в спектрах испускания, поглощения и	Онлаин	0	0
	комбинационного рассеяния, правила отбора.	0	0	0
	Колебательно-вращательные спектры двухатомных			
	Молекул.			
	Потенциальная энергия многоатомных молекул.			
	Естественные и нормальные координаты. Ангармонизм		L	<u> </u>

			T	
	колебаний многоатомных молекул. Обертона и составные			
	частоты. Симметрия колебаний многоатомных молекул,			
	координаты симметрии. Правила отбора для			
	радиационных колебательных переходов и			
	комбинационного рассеяния в многоатомных молекулах.			
	Резонанс Ферми. Методы колебательной спектроскопии			
	для исследования наноструктур. Понятие о релаксации			
	колебательного возбуждения молекул. Многофотонное			
	возбуждение и диссоциация молекул.			
9 - 10	Тема 6	Всего а	удиторных	часов
	Электронные состояния и спектры двухатомных молекул.	2	4	0
	Устойчивые и неустойчивые (разлетные) состояния,	Онлайн	H	•
	химическая связь. Характеристика состояний отдельных	0	0	0
	электронов. Связывающие и антисвязывающие			
	молекулярные электроны и химическая связь.			
	Электронные состояния и химическая связь в ионе			
	молекул водорода. Электронные состояния и химическая			
	связь в молекуле водорода. Метод молекулярных			
	орбиталей и электронных пар. Колебательная структура			
	спектров двухатомных молекул. Принцип Франца-			
	Кондона и относительная интенсивность электронно-			
	колебательных полос. Понятие о фотодиссоциации и			
	предиссоциации молекул. Вращательная структура			
	электронно-колебательных полос.			
11 - 12	Тема 7	Всего а	удиторных	часов
	Электронные состояния и спектры многоатомных	2	4	0
	молекул. Электронные состояния и химическая связь	Онлайн	I	
	многоатомных молекул. Теорема Яна-Теллера. Принцип	0	0	0
	Франка-Кондона для многоатомных молекул. Правила			
	отбора. Диаграмма Яблонского. Внутренняя и			
	интеркомбинационная конверсия в многоатомных			
	молекулах. Флюоресценция и фосфоресценция.			
	Многоступенчатое возбуждение и диссоциация			
	многоатомных молекул. Понятие о лазерах на растворах			
	органических красителей. Понятие об электронных			
	спектрах наночастиц и молекулярных кластеров.			
	1 1	1	L	l

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

Недели	Темы занятий / Содержание
, , , ,	8 Семестр
1 - 2	Тема 1
1 2	Основные положения квантовомеханической теории молекул. Порядок величин
	электронной, колебательной и вращательной энергии. Принцип Борна Оппенгеймера.
	Отделение колебаний от вращения. Радиационные переходы, электронные
	колебательные и вращательные спектры. Интенсивности в спектрах.
3	Тема 2
3	Основы теории комбинационного рассеяния света. Колебательное и вращательное
	комбинационное рассеяние света. Характеристики переходов и интенсивности в
	случае спектров комбинационного рассеяния. Вынужденное комбинационное
	рассеяние света. Понятие о когерентном актистоксовом рассеянии света. И
4	гигантском комбинационном рассеянии.
4	Тема 3
	Основы теории симметрии. Понятие точной группы Точечные группы низшей,
	средней и высшей симметрии. Свойства симметрии равновесных конфигураций
	молекул. Понятие о представлениях групп, непреводимые представления точечных
	групп. Связь компонентов дипольного момента и тензора поляризуемости с
	симметрией молекул. Правила отбора по симметрии.
5 - 6	Тема 4
	Вращательные спектры молекул. Вращательные уровни и вращательные переходы
	линейных молекул. Правила отбора, интенсивности вращательных спектров и
	заселенности вращательных уровней для линейных молекул. Вращательные уровни
	молекул типа сферического волчка.
	Молекулы типа симметричного и ассиметричного волчка. Момент инерции и
	вращательные постоянные. Вращательные уровни и вращательные переходы для
	молекул типа ассиметричного волчка. Правила отбора и интенсивности в спектрах.
7 - 8	Тема 5
	Колебательные спектры молекул. Гармонические и ангармонические колебания
	двухатомных молекул. Интенсивности в спектрах испускания, поглощения и
	комбинационного рассеяния, правила отбора. Колебательно-вращательные спектры
	двухатомных молекул.
	Потенциальная энергия многоатомных молекул. Естественные и нормальные
	координаты. Ангармонизм колебаний многоатомных молекул. Обертона и составные
	частоты. Симметрия колебаний многоатомных молекул, координаты симметрии.
	Правила отбора для радиационных колебательных переходов и комбинационного
	рассеяния в многоатомных молекулах. Резонанс Ферми. Методы колебательной
	спектроскопии для исследования наноструктур. Понятие о релаксации
	колебательного возбуждения молекул. Многофотонное возбуждение и диссоциация
	молекул.
9 - 10	Тема 6
<i>y</i> 10	Электронные состояния и спектры двухатомных молекул. Устойчивые и
	неустойчивые (разлетные) состояния, химическая связь. Характеристика состояний
	отдельных электронов. Связывающие и антисвязывающие молекулярные электроны и
	химическая связь. Электронные состояния и химическая связь в ионе молекул
	водорода. Электронные состояния и химическая связь в молекуле водорода. Метод
	молекулярных орбиталей и электронных пар. Колебательная структура спектров
	двухатомных молекул. Принцип Франца-Кондона и относительная интенсивность
	электронно-колебательных полос. Понятие о фотодиссоциации и предиссоциации
11 12	молекул. Вращательная структура электронно-колебательных полос
11 - 12	Тема 7
	Электронные состояния и спектры многоатомных молекул. Электронные состояния и

химическая связь многоатомных молекул. Теорема Яна-Теллера. Принцип Франка-Кондона для многоатомных молекул. Правила отбора. Диаграмма Яблонского. Внутренняя и интеркомбинационная конверсия в многоатомных молекулах. Флюоресценция и фосфоресценция. Многоступенчатое возбуждение и диссоциация многоатомных молекул. Понятие о лазерах на растворах органических красителей. Понятие об электронных спектрах наночастиц и молекулярных кластеров.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Используются современные предметно- и личностно-ориентированные образовательные технологии

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-3	3-ПК-3	Э, КИ-8, КИ-12
	У-ПК-3	Э, КИ-8, КИ-12
	В-ПК-3	Э, КИ-8, КИ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84]	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»		по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	E	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
		F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
	2_		материала, допускает существенные
Ниже 60	«неудовлетворительно»		ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ C21 Carbon Nanoparticles and Nanostructures : , , Cham: Springer International Publishing, 2016
- 2. 539.1 Е59 Атомная и молекулярная спектроскопия : общие вопросы спектроскопиипособие для вузов, Ельяшевич М.А., Москва: Либроком, 2011
- 3. 539.1 Е59 Атомная и молекулярная спектроскопия. Молекулярная спектроскопия : , Ельяшевич М.А., Москва: Либроком, 2009
- 4. ЭИ А 92 Атомная физика Т. 2 Основы квантовой механики и строение электронной оболочки атома, , : , 2022

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 539.2 Г82 Колебания молекул: , Грибов Л.А., Москва: Либроком, 2009
- 2. 539.1 Л52 Нелинейные селективные фотопроцессы в атомах и молекулах : , Летохов В.С., М.: Наука, 1983
- 3. 539.1 Ф69 Строение и динамика молекул Т. 2, Флайгер У., М.: Мир, 1982
- 4. 539.1 Ф69 Строение и динамика молекул Т.1, Флайгер У., М.: Мир, 1982
- 5. 531.2 Г41 Электронные спектры и строение многоатомных молекул : , Герцберг Г., Москва: Мир, 1969

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Демонстрационный проектор

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса студент должен твердо усвоить основные представления о строении атомов и молекул, о современных методах спектроскопии и их применении в смежных областях, физике твердого тела, нанофотонике и т.п.

Студент должен уметь свободно определять сериальные закономерности для «легкого атома» исходя из понятия терма и правил отбора. Должен уметь вычислять отношения интенсивностей в спектрах для типичных случаев. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студент должен твердо усвоить понятие насыщения перехода и уметь делать оценки для лазерной интенсивности насыщения перехода. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студен должен уметь правильно выбрать систему координат для эффективного разделения энергии колебания и вращения. Он должен научиться использовать принцип адиабатического приближения для приближенного анализа молекулярных спектров. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студент должен уметь использовать теорию возмущений для вывода выражения интенсивности электронных, колебательных и вращательных спектров. Студент должен освоить комбинационное рассеяние и вынужденное комбинационное рассеяние для применения этих знаний при изучении последующих курсов. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студент должен освоить физические закономерности формирования молекулярных вращательных спектров, и уметь продемонстрировать принципы теории симметрии в систематике вращательных спектров для молекул различных типов. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студен должен усвоить принцип независимых колебательных мод молекул и знать границы его применения. Он должен уметь проводить расчет поправок к энергетическим уровням с помощью теории возмущений. В качестве самостоятельной работы – решать задачи, предложенные преподавателем.

Студент должен освоить понятие электронного терма и уметь написать терм для двухатомных молекул. Важно также понимать взаимосвязь электронных термов с симметрией электронных состояний. При изучении электронно-колебательных переходов необходимо освоить принцип Франка-Кондона и уметь показать как он следует из общей теории

радиационных переходов. В качестве самостоятельной работы – изучить основы теории химической связи

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Студенты выносят из курса общей физики несколько искаженное представление о терме. Следует подробно объяснить зависимость электростатического расщепления от суммарного спина и суммарного орбитального момента. Первое можно сделать на примере двухэлектронного атома (атома гелия). Важно дать понятия о коэффициентах Эйнштейна и об дать квантово-механический вывод вероятности радиационного их взаимосвязи, а также перехода и объяснить студентам, что такое матричный элемент оператора дипольного момента и его связь с вероятностью радиационного перехода. Чтобы избежать формального усвоения правил отбора, необходимо объяснить их физическую природу, обусловленную элементарным процессом взаимодействия фотона с атомом. Можно дать понятие о насыщении перехода. Для объяснения типичных спектров атомов различных периодов периодической таблицы, следует активно использовать: понятие спектрального терма, правила отбора, оболочечную модель, теорию тонкого расщепления и т.п. Удобно продемонстрировать некоторые основные принципы спектроскопии многоэлектронного атома на примере работы некоторых атомных и ионных лазеров - таких как лазер на парах меди и золота, иодный лазер, гелий-неоновый лазер. При рассмотрении многоступенчатого возбуждения атомов необходимо использовать понятие насыщения перехода. При этом студенты должны уметь самостоятельно сделать оценки для интенсивности лазерного излучения, требуемой для эффективной многоступенчатой ионизации. В этом разделе необходимо дать понятие о технологии лазерного разделения изотопов, а также аналитических методах детектирования атомарных примесей в конденсированных средах.

Автор(ы):

Чистяков Александр Александрович, д.ф.-м.н., с.н.с.