Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА РАДИАЦИОННОЙ ФИЗИКИ И БЕЗОПАСНОСТИ АТОМНЫХ ТЕХНОЛОГИЙ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/0821-573.1

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

АППАРАТУРА КОНТРОЛЯ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Направление подготовки (специальность)

[1] 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	3	108	15	15	15		63	0	3
Итого	3	108	15	15	15	15	63	0	

АННОТАЦИЯ

Дисциплина предполагает овладения студентами предшествующих дисциплин, посвящённых дозиметрии ионизирующих излучений, взаимодействию излучений с веществом, методам ядерной физики, электроники. После успешного освоения данной дисциплины студент, пройдя соответствующую практику, сможет работать в институтах, разрабатывающую аппаратуру, на атомных электростанциях, в службах внешней дозиометрии.

Из читаемых лекций студент узнаёт о конструкции ионизационных камер, об оптимизации толщины стенок, о вольтамперных характеристиках камер при их наполнении воздухом и электроположительным газом. Узнает о выборе сцинтиллятора для сцинтилляционного дозиметра и о выборе оптимального напряжения, подаваемого на ФЭУ. Узнает о способах улучшения энергетической зависимости чувствительности дозиметров с газоразрядными счётчиками.

Существенное внимание уделено в курсе современным методам индивидуальной дозиметрии.

Наряду с дозиметрической аппаратурой будут рассмотрены радиометрические приборы для определения активности, удельной и поверхностной активности, степени загрязнённости рабочей поверхности и одежды, плотностей потоков частиц и, прежде всего, нейтронов.

Особую группу радиометрических устройств составляют счётчики (спектрометры) человека, используемые для определения содержания инкорпорированных радионуклидов и расчёта доз внутреннего облучения.

На АЭС размещено более сотни дозиметрических и радиометрических блоков, которые объединены в единую сеть. В курсе будут рассмотрены назначение и особенности работы систем радиационно-технологического контроля (РТК), радиационного контроля помещений и промплощадки (РПК), радиационного контроля окружающей среды (РКОС). Студенты будут знать аппаратуру и характеристики информационно-измерительной системы радиационного контроля, топологию системы, построение информационных каналов, устройства накопления и отображения информации.

В результате освоения дисциплиной студент будет обладать знаниями и навыками для разработки, отладки и эксплуатации устройств детектирования, понимать работу информационноизмери тельной системы радиационного контроля.

Лекционный курс дополняется современным лабораторным практикумом.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются создание базиса знаний для проектирования и грамотной эксплуатации дозиметров и радиометров, привитие навыков отладки и поверки аппаратуры, освоение принципов интеграции аппаратуры в системы радиационного контроля.

В результате освоения дисциплины студент будет обладать знаниями и навыками для разработки, отладки и эксплуатации устройств детектирования, понимать работу информационно-измерительной системы радиационного контроля. После успешного освоения данной дисциплины студент, пройдя соответствующую практику, сможет работать в институтах, разрабатывающих аппаратуру, на атомных электростанциях, в службах внешней дозиметрии.

Из читаемых лекций студент узнаёт о конструкции ионизационных камер, об оптимизации толщины стенок, о вольтамперных характеристиках камер при их наполнении воздухом и электроположительным газом. Узнает о выборе сцинтиллятора для сцинтилляционного дозиметра и о выборе оптимального напряжения, подаваемого на ФЭУ. Узнает о способах улучшения энергетической зависимости чувствительности дозиметров с газоразрядными счётчиками.

Существенное внимание уделено в курсе современным методам индивидуальной дозиметрии.

Наряду с дозиметрической аппаратурой будут рассмотрены радиометрические прибо-ры для определения активности, удельной и поверхностной активности, степени загряз-нённости рабочей поверхности и одежды, плотностей потоков частиц и, прежде всего, нейтронов.

Особую группу радиометрических устройств составляют счётчики (спектрометры) человека, используемые для определения содержания инкорпорированных радионуклидов и расчёта доз внутреннего облучения.

На АЭС размещено более сотни дозиметрических и радиометрических блоков, кото-рые объединены в единую сеть. В курсе будут рассмотрены назначение и особенности работы систем радиационно-технологического контроля (РТК), радиационного контроля по-мещений и промплощадки (РПК), радиационного контроля окружающей среды (РКОС). Студенты будут знать аппаратуру и характеристики информационно-измерительной системы радиационного контроля, топологию системы, построение инфор-мационных каналов, устройства накопления и отображения информации.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина предполагает овладение студентами предшествующих дисциплин, посвящённых дозиметрии ионизирующих излучений, взаимодействию излучений с веществом, методам ядерной физики, электроники. Студент должен знать основные акты взаимодействия ионизирующих частиц с атомами и ядрами, представлять зависимость сечений процессов от энергии частиц, особенности прохождения заряженных и незаряженных частиц в веществе. Студент должен знать физику работы детекторов различных типов. Студент должен представлять работу основных блоков электроники.

Дисциплина изучается на завершающей стадии теоретического обучения. Резуль-таты её освоения будут использованы в период практики, дипломного проектирования и в будущей деятельности.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

профессиональной деятельности (ЗПД)	область знания зводственно-технологи		индикатора достижения профессиональной компетенции
проектирование, создание и эксплуатация атомных станций и других ядерных энергетических установок, вырабатывающих, преобразующих и использующих тепловую и ядерную энергию, включая входящие в их состав системы контроля, защиты, управления и обеспечения ядерной и радиационной безопасности	процессы контроля параметров, защиты и диагностики состояния ядерных энергетических установок; информационно-измерительная аппаратура и органы управления, системы контроля, управления, защиты и обеспечения безопасности, программнотехнические комплексы информационных и управляющих систем ядерных энергетических установок	ПК-10 [1] - Способен провести оценку ядерной и радиационной безопасности при эксплуатации и выводе из эксплуатации ядерных энергетических установок, а также при обращении с ядерным топливом и радиоактивными отходами Основание: Профессиональный стандарт: 24.028, 24.033	3-ПК-10[1] - знать критерии ядерной и радиационной безопасности ЯЭУ;; У-ПК-10[1] - уметь проводить оценки ядерной и радиационной безопасности ЯЭУ;; В-ПК-10[1] - владеть методами оценки ядерной и радиационной безопасности при эксплуатации ЯЭУ, а также при обращении с ядерным топливом и радиоактивными отходами
проектирование, создание и эксплуатация атомных станций и других ядерных энергетических установок, вырабатывающих, преобразующих и использующих тепловую и ядерную энергию, включая входящие в их состав системы контроля, защиты, управления и обеспечения ядерной и радиационной безопасности	процессы контроля параметров, защиты и диагностики состояния ядерных энергетических установок; информационно-измерительная аппаратура и органы управления, системы контроля, управления безопасности, программнотехнические комплексы информационных и управляющих систем ядерных энергетических установок	ПК-9 [1] - Способен анализировать нейтронно-физические, технологические процессы и алгоритмы контроля, управления и защиты ЯЭУ с целью обеспечения их эффективной и безопасной работы Основание: Профессиональный стандарт: 24.028, 24.033	3-ПК-9[1] - Знать правила и нормы в атомной энергетике, критерии эффективной и безопасной работы ЯЭУ;; У-ПК-9[1] - уметь анализировать нейтроннофизические, технологические процессы и алгоритмы контроля, управления и защиты ЯЭУ;; В-ПК-9[1] - владеть методами анализа нейтроннофизических и технологических процессов в ЯЭУ.

организационно-управленческий

ПК-13 [1] - Способен к 3-ПК-13[1] - знать проектирование, теплофизические контролю соблюдения техническую создание и энергетические установки как документацию по эксплуатация технологической атомных станций и объекты дисциплины и обслуживанию других ядерных человеческой обслуживанию технологического энергетических деятельности, технологического оборудования;; установок, связанной с их оборудования У-ПК-13[1] - уметь вырабатывающих, производить контроль созданием и преобразующих и эксплуатацией Основание: соблюдения использующих Профессиональный технологической тепловую и ядерную стандарт: 24.032, дисциплины;; 24 033 В-ПК-13[1] - владеть энергию, включая базовыми навыками входящие в их состав системы контроля, работы на защиты, управления и технологическом обеспечения ядерной оборудовании и радиационной безопасности научно-исследовательский проектирование, ядерно-физические ПК-3 [1] - Способен к 3-ПК-3[1] - знать создание и процессы, проведению методы проведения протекающие в исследований исследований эксплуатация атомных станций и оборудовании и физических процессов физических процессов устройствах для других ядерных в ядерных энергетических выработки, энергетических У-ПК-3[1] - уметь установок, преобразования и установках в процессе проводить вырабатывающих, использования разработки, создания, исследования и преобразующих и монтажа, наладки и ядерной и тепловой испытания использующих энергии; эксплуатации оборудования тепловую и ядерную безопасность ядерных энергию, включая Основание: эксплуатации и энергетических входящие в их состав радиационный Профессиональный установок; стандарт: 24.078, В-ПК-3[1] - владеть системы контроля, контроль атомных 40.008, 40.011 защиты, управления и объектов и методиками обеспечения ядерной установок; испытаний и радиационной оборудования при его безопасности монтаже и наладке проектный ядерно-физические ПК-8 [1] - Способен проектирование, 3-ПК-8[1] - Знать создание и процессы, использовать основные физические протекающие в информационные законы и стандартные эксплуатация оборудовании и технологии при атомных станций и прикладные пакеты устройствах для разработке новых используемые при других ядерных энергетических выработки, установок, материалов, проектировании

приборов и систем,

осуществлять сбор,

анализ и подготовку

проектов ЯЭУ и их

исходных данных для

готовностью

компонентов

преобразования и

ядерной и тепловой

энергии; ядерно-

энергетическое

оборудование

электрических

атомных

использования

установок,

вырабатывающих,

преобразующих и

энергию, включая

системы контроля,

тепловую и ядерную

входящие в их состав

использующих

физических установок

У-ПК-8[1] - уметь

информационные

прикладные пакеты

используемые при

и систем; ;

применять

технологии и

защиты, управления и	станций и других	Основание:	проектировании
обеспечения ядерной	ядерных	Профессиональный	физических установок
и радиационной	энергетических	стандарт: 24.078,	и систем;;
безопасности	установок;	40.008	В-ПК-8[1] - владеть
	безопасность		методами анализа и
	эксплуатации и		исходных данных для
	радиационный		проектов ЯЭУ и их
	контроль атомных		компонентов
	объектов и		
	установок;		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Профессиональное	Создание условий,	1.Использование воспитательного
	·	
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства личной	профессионального модуля для
	ответственности за научно-	формирования чувства личной
	технологическое развитие	ответственности за достижение
	России, за результаты	лидерства России в ведущих
	исследований и их последствия	научно-технических секторах и
	(B17)	фундаментальных исследованиях,
		обеспечивающих ее экономическое
		развитие и внешнюю безопасность,
		посредством контекстного обучения,
		обсуждения социальной и
		практической значимости
		результатов научных исследований
		и технологических разработок.
		2.Использование воспитательного
		потенциала дисциплин
		профессионального модуля для
		формирования социальной
		ответственности ученого за
		результаты исследований и их
		последствия, развития
		исследовательских качеств
		посредством выполнения учебно-
		1 -
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов,
		критический анализ публикаций в
		профессиональной области,
		вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое

	профессиональное развитие и профессиональные решения (B18)	профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых информационных технологий.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследовательская работа", "осредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и
Профессиональное воспитание	Создание условий, обеспечивающих, формирование культуры ядерной безопасности (B24)	теорий. 1.Использование воспитательного потенциала блока профессиональных дисциплин для формирования чувства личной ответственности за соблюдение ядерной и радиационной безопасности, а также соблюдение государственных и коммерческих

тайн. 2.Использование воспитательного потенциала содержания учебных дисциплин «Актуальные проблемы эксплуатации АЭС», «Основы экологической безопасности в ядерной энергетике», «Системы радиационного контроля» для формирование личной ответственности за соблюдение экологической и радиационной безопасности посредством изучения основополагающих документов по культуре ядерной безопасности, разработанных МАГАТЭ и российскими регулирующими органами, норм и правил обращения с радиоактивными отходами и ядерными материалами. 3. Использование воспитательного потенциала учебных дисциплин «Контроль и диагностика ядерных энергетических установок», «Надежность оборудования атомных реакторов и управление риском», «Безопасность ядерного топливного цикла», «Ядерные технологии и экология топливного цикла» для формирования личной ответственности за соблюдение и обеспечение кибербезопасности и информационной безопасности объектов атомной отрасли через изучение вопросов организации информационной безопасности на объектах атомной отрасли, основных принципов построения системы АСУТП ядерных объектов, методов защиты и хранения информации, принципов построения глубокоэшелонированной и гибкой системы безопасности ядернофизических объектов. 4. Использование воспитательного потенциала содержания блока дисциплин «Экология», «Системы радиационного контроля», «Основы экологической безопасности в ядерной энергетике» для формирования ответственной экологической позиции посредством изучения вопросов

обеспечения такого уровня
безопасности АЭС, при котором
воздействие на окружающую среду,
обеспечивает сохранение природных
систем, поддержание их
целостности и
жизнеобеспечивающих функций,
через рассмотрение вопросов
радиационного контроля при
захоронении и переработки ядерных
отходов, вопросов замыкания
ядерного топливного цикла.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	8 Семестр Стационарные и носимые дозиметры фотонного излучения	1-8	8/8/8	ДЗ-8 (25)	25	Д3-8	3-ПК- 10, У- ПК- 10, В- ПК- 10, 3-ПК- 13, У- ПК- 13, В- ПК- 13, 3-ПК- 13, 3-ПК- 3, У- ПК- 13,

			ı			T	
2	Индивидуальные дозиметры	9-15	7/7/7	Реф-14 (25)	25	Реф-14	8, У- ПК-8, В- ПК-8, 3-ПК-9, У- ПК-9, В- ПК-10, У- ПК-10, В- ПК-10, 3-ПК-
	Итого за 8 Семестр		15/15/15		50		3-IIK- 13, y- IIK- 13, B- IIK- 13, 3-IIK- 3, y- IIK-3, B- IIK-3, 3-IIK- 8, y- IIK-8, B- IIK-8, B- IIK-9, B- IIK-9,
	Контрольные мероприятия за 8 Семестр				50	3	3-ПК- 10, У- ПК- 10, В-

			ПК-
			10,
			3-ПК-
			13,
			У-
			ПК-
			13,
			B-
			ПК-
			13,
			3-ПK-
			3
			3, y-
			ПК-3,
			B-
			ПК-3,
			3-ПК-
			8
			8, У-
			ПК-8,
			B-
			ПК-8,
			3-ПК-
			9
			9, Y-
			ПК-9,
			B-
			ПК-9
			1111-7

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
ДЗ	Домашнее задание
Реф	Реферат
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	8 Семестр	15	15	15
1-8	Стационарные и носимые дозиметры фотонного	8	8	8
	излучения			
1 - 8	Стационарные и носимые дозиметры фотонного	Всего	аудиторных	часов
	излучения	8	8	8
	1-2-я неделя	Онлай	Н	

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		1	<u> </u>	1
	Опрос об основных видах взаимодействия прямо и			
	косвенно ионизирующего излучения с веществом			
	Основные дозиметрические понятия и величины. Тонкий и			
	толстый детекторы, измерение плотностей тока и потока.			
	3-4-я недели			
	Ионизационный дозиметр. Конструкция типичных			
	ионизационных камер, вольтамперные характеристики при			
	наполнении камер воздухом и электроположительными			
	газами. Энергетическая зависимость чувствительности			
	(ЭЗЧ) от толщины стенки			
	5-6-я недели			
	Использование газоразрядных счётчиков в дозиметрии.			
	Принцип работы, ЭЗЧ счётчика и пути её улучшения.			
	Зависимость показаний от мощности дозы. Многонитяные			
	счётчики. Способы расширения измеряемого диапазона			
	мощностей доз.			
	7-8-я недели			
	Сцинтилляционные измерители мощности дозы фотонного			
	излучения. Выбор сцинтиллятора, выбор напряжения,			
	подаваемого на ФЭУ и делитель напряжения. Методы			
	подавления темнового тока ФЭУ. Возможность			
	расширения диапазона доз в область меньших значений.			
9-15	Индивидуальные дозиметры	7	7	7
9 - 15	Индивидуальные дозиметры	Всего а	удиторных	часов
	9-10-я недели	7	7	7
	Термолюминесцентные дозиметры. Основные типы	Онлайі	T	1 -
	термолюминесцентных детекторов и их характеристики.			
	Способы измерения запасённой светосуммы. Зависимость			
	светосуммы от дозы. Способы улучшения ЭЗЧ.			
	Возможность создания бета –дозиметра.			
	11-12-я недели			
	Радиофотолюминесцентные дозиметры. Типичный состав			
	люминофора. Способы измерения светосуммы. Способы			
	улучшения ЭЗЧ.			
	13-14-я недели			
	Полупроводниковые детекторы в дозиметрии. Типы			
	полупроводниковых детекторов, вентильный и диодный			
	режимы. Регистрация импульсов и способ улучшения ЭЗЧ.			
	15-я неделя			
	Прием рефератов			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
Т	Тесты

ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1. Традиционные лекции с использованием мультимедийной техники.
- 2. Ролевая игра.
- 3. Подготовка и защита рефератов.
- 4. Предусматривается разбор конкретных ситуаций.
- 5. Посещение одного из кризисных центров.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	-	(КП 1)
ПК-10	3-ПК-10	3, Д3-8, Реф-14
	У-ПК-10	3, Д3-8, Реф-14
	В-ПК-10	3, Д3-8, Реф-14
ПК-13	3-ПК-13	3, ДЗ-8, Реф-14
	У-ПК-13	3, Д3-8, Реф-14
	В-ПК-13	3, ДЗ-8, Реф-14
ПК-3	3-ПК-3	3, ДЗ-8, Реф-14
	У-ПК-3	3, ДЗ-8, Реф-14
	В-ПК-3	3, Д3-8, Реф-14
ПК-8	3-ПК-8	3, ДЗ-8, Реф-14
	У-ПК-8	3, Д3-8, Реф-14
	В-ПК-8	3, Д3-8, Реф-14
ПК-9	3-ПК-9	3, Д3-8, Реф-14
	У-ПК-9	3, ДЗ-8, Реф-14
	В-ПК-9	3, ДЗ-8, Реф-14

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
Cymma	Оценка по 4-ел	Оцспка	преобрания к уровню освоению

баллов	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется
	5 — «отлично»		студенту, если он глубоко и прочно
		A	усвоил программный материал,
			исчерпывающе, последовательно,
90-100			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	1	С	студенту, если он твёрдо знает
75 01	4 (2122222)		материал, грамотно и по существу
50.54	4 – «хорошо»		излагает его, не допуская
70-74		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	1		выставляется студенту, если он имеет
	3 — «удовлетворительно»	Е	знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
	60 2 — «неудовлетворительно»		Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
		F	программного материала, допускает
Ниже 60			существенные ошибки. Как правило,
пиже оо			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К49 Радиационная дозиметрия: монография, Москва: НИЯУ МИФИ, 2014
- 2. ЭИ Б 90 Спектрометрия ионизирующих излучений. Гамма-спектрометрия : учеб. пособие, Москва: НИЯУ МИФИ, 2021
- 3. ЭИ Б 90 Спектрометрия ионизирующих излучений. Основные понятия и терминология : учебно-методическое пособие, Москва: НИЯУ МИФИ, 2021
- 4. 539.1 К78 Инструментальные методы радиационной безопасности : учебное пособие для вузов, Е. А. Крамер-Агеев, В. С. Трошин, Москва: НИЯУ МИФИ, 2011

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 539.1 ЯЗ4 Ядерное приборостроение Т.2 Измерительные системы. Т.3: Производство аппаратуры, , Москва: Восточный горизонт, 2005
- 2. 539.1 К78 Инструментальные методы радиационной безопасности : конспект лекций: учебное пособие для вузов, Е. А. Крамер-Агеев, В. С. Трошин, Москва: МИФИ, 2003
- 3. 33 К90 Методика использования задач и деловых игр в преподавании политэкономии : , Кулешов В.У., М.: Высш.школа, 1991

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Дисциплина "Аппаратура контроля радиационной безопасности" предполагает овладения студентами предшествующих дисциплин, посвящённых дозиметрии ионизирующих излучений, взаимодействию излучений с веществом, методам ядерной физики, электроники. После успешного освоения данной дисциплины студент, пройдя соответствующую практику, сможет работать в институтах, разрабатывающую аппаратуру, на атомных электростанциях, в служ-бах внешней дозиометрии.

Из читаемых лекций студент узнаёт о конструкции ионизационных камер, об оптимизации толщины стенок, о вольтамперных характеристиках камер при их наполнении воздухом и электроположительным газом. Узнает о выборе сцинтиллятора для сцинтилляционного дозиметра и о выборе оптимального напряжения, подаваемого на ФЭУ. Узнает о способах улучшения энергетической зависимости чувствительности дозиметров с газоразрядными счётчиками.

Существенное внимание уделено в курсе современным методам индивидуальной дозиметрии.

Наряду с дозиметрической аппаратурой будут рассмотрены радиометрические приборы для определения активности, удельной и поверхностной активности, степени загрязнённости рабочей поверхности и одежды, плотностей потоков частиц и, прежде всего, нейтронов.

Особую группу радиометрических устройств составляют счётчики (спектрометры) человека, используемые для определения содержания инкорпорированных радионуклидов и расчёта доз внутреннего облучения.

На АЭС размещено более сотни дозиметрических и радиометрических блоков, которые объединены в единую сеть. В курсе будут рассмотрены назначение и особенности работы систем радиационно-технологического контроля (РТК), радиационного контроля помещений и промплощадки (РПК), радиационного контроля окружающей среды (РКОС). Студенты будут знать аппаратуру и характеристики информационно-измерительной системы радиационного контроля, топологию системы, построение информационных каналов, устройства накопления и отображения информации.

В результате освоения дисциплиной студент будет обладать знаниями и навыками для разработки, отладки и эксплуатации устройств детектирования, понимать работу информационно-измери тельной системы радиационного контроля.

Лекционный курс дополняется современным лабораторным практикумом.

Лекция 1

Основные дозиметрические понятия и величины. Тонкий и толстый детекторы, изменрение плотностей тока и потока. Опрос об основных видах взаимодействия прямо и косвенно иони-зирующего излучения с веществом.

Лекция 2

Ионизационный дозиметр. Конструкция типичных ионизационных камер, вольтамперные ха-рактеристики при наполнении камер воздухом и электроположительными газами. Энергети-ческая зависимость чувствительности (ЭЗЧ) от толщины стенки

Лекция 3

Использование газоразрядных счётчиков в дозиметрии. Принцип работы, ЭЗЧ счётчика и пути её улучшения. Зависимость показаний от мощности дозы. Много нитяные счётчики. Способы расширения измеряемого диапазона мощностей доз.

Лекпия 4

Сцинтилляционные измерители мощности дозы фотонного излучения. Выбор сцинтиллятора, выбор напряжения, подаваемого на ФЭУ и делитель напряжения. Методы подавления темно-вого тока ФЭУ. Возможность расширения диапазона доз в область меньших значений.

Лекция 5

Термолюминесцентные дозиметры. Основные типы термолюминесцентных детекторов и их характеристики. Способы измерения запасённой светосуммы. Зависимость светосуммы от дозы. Способы улучшения ЭЗЧ. Возможность создания бета –дозиметра.

Лекпия 6

Радиофотолюминесцентные дозиметры. Типичный состав люминофора. Способы измеорения светосуммы. Способы улучшения ЭЗЧ.

Лекция 7

Полупроводниковые детекторы в дозиметрии. Типы полупроводниковых детекторов, вен-тильный и диодный режимы. Регистрация импульсов и и способ улучшения ЭЗЧ.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ (семестр 8)

1. Интеллектуальный ионизационный дозиметр.

- 2. Дозиметр с газоразрядным счётчиком.
- 3. Сцинтилляционный дозиметр с комбинированным сцинтиллятором.
- 4. Сцинтилляционное устройство детектирования с NaI(Tl).
- 5. Термолюминесцентные и радиофотолюминесцентные дозиметры для индивидуального дозиметрического контроля.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Ограниченное число студентов позволяет проводить занятия с активным вовле-чением слушателей в познавательный процесс, совмещая лекции с элементами практиче-ских занятий и семинаров.

Данный курс базируется на знаниях, полученных студентами в предшествующих дисциплинах: «Дозиметрия ионизирующих излучений», «Общая электротехника и электроника», «Экспериментальная ядерная физика».

Курс начинается с ознакомления системы передачи единиц от Государственного Эталона рабочим средствам измерения. Следует обратить внимание на возрастающую неопределённость измеряемой величины по мере удаления от Государственного Эталона. Среди общих требований, предъявляемых к дозиметрам и радиометрам, необходимо об-ратить внимание студентов на термин показатели качества, фактически это характери-стика устройств. Среди них для освоения курса играют такие показатели, как диапазон и поддиапазоны измерений, диапазон энергий частиц, основные и дополнительные погреш-ности. Необходимо показать различие в требованиях, предъявляемых к индивидуальным, носимым, переносным приборам. Следует выделить показатели качества индивидуальных дозиметров.

. Необходимо дать в виде рисунка задачи дозиметров и радиометров и показать их место в системе контроля радиационной безопасности.

Каждый студент должен воспринять необходимость разработки избирательных радиометров. Усвоить фундаментальную разницу между измерением тока и потока излуче-ния и вытекающие отсюда требования к толщине детектора.

Необходимо привести примеры регистрацииа-частиц, фотонов при толщине де-тектора много меньше $1/\Box$, или R и больше чем $1/\Box$. или R,соответственно. Покажите стремление показаний к бесконечности при измерении плотности потока и к ½ при из-мерении тока по мере уменьшения расстояния детектор \Box источник.

Пригласите двух студентов и предложите им нарисовать на доске зависимость мононаправленного потока а-частиц от глубины проникновения в вещество и зависимость плотности переданной энергии от глубины. Упомяните об узком энергетическом диапа-зоне испускаемых радионуклидами а-частиц.

Студент должен представлять особенности распространения а-частиц в веществе, уровень линейной передачи энергии (ЛПЭ), масштаб пробега а-частиц, реализацию этих свойств при разработке блоков детектирования избирательных радиометров. Начать рассмотрение а-радиометров следует с распространенных во всем мире приборов с дис-персным сцинтиллятором. Покажите при простейшей оценке разницу в поглощенных энергиях при взаимодействии а-частиц и электронов.

Затем следует дать описание принципа работы пропорционального счётчика. Нужно показать схему используемых конструкций.

Пригласите студентов высказать их мнение о зависимости коэффициента газового усиления (КГУ) от диаметра нити, напряжения и давления.

Подчеркните нежелательный эффект от проникновения в объём счётчика воздуха и паров воды.

При рассмотрении полупроводниковых детекторов пригласите кого-либо из сту-дентов объяснить принцип работы. Дайте краткое напоминание о структуре детектора, зависимости ширины перехода от напряжения. Студент должен понять, почему в полу-проводниковых (ППД) радиометрах обязательно используют зарядочувствительный уси-литель.

Дайте зависимость поправок от толщины окна детектора для тонкого и толстого источников. Приведите рисунок, как меняется а-спектр от толщины источника.

При изучении раздела о b-радиометрах необходимо вспомнить о типичных спек-трах электронов и позитронов, их прохождении через вещество, что необходимо при введении поправок на поглощение b-излучения в окне или стенках детектора. Знать от-вет на вопрос, почему предпочитают органические кристаллы в блоках детектирования и как подбирать толщину сцинтиллятора. При исследованиях загрязненности воды, про-дуктов питания и т.п. уровни активности бывают малы, и фон служит серьёзной помехой, каковы природные методы уменьшения вклада фона.

Дайте структурную схему установок малого фона и самого чувствительного в ми-ре радиометра РБК-4 ем, использующего метод совпадений. Остановитесь на проблеме измерения трития; опишите схему радиометров для регистрации активности проб с три-тием.

Рассмотрев радиометры а- и b-излучения, следует перейти к радиометрам газов и аэрозолей. Нарисуйте схеме радиометра газов с волоконным фильтром для осаждения аэрозолей. Остановитесь на проблеме градуировки газоразрядного счётчика в объёмной трубе.

При описании радиометров жидкостей, включая воду, кратко опишите погружные детекторы.

Обычно нет необходимости в использовании g-радиометров, а применяют обыч-но g-дозиметры. Студент должен вспомнить, что такое поглощенная доза и керма, каковы требования к приблизительному экспериментальному определению кермы.

Пригласите студентов объяснить, что такое эквивалентная доза и эквивалент дозы, операционные величины. Напомните, за каким экраном следует измерять поглощенную дозу.

Необходимо показать, как выбрать объём и напряжение ионизационного дозимет-ра, представить энергетическую зависимость показаний дозиметра при разных толщинах стенки камеры.

При рассмотрении сцинтилляционных дозиметров необходимо объяснить, какой сцинтиллятор предпочтителен, как выбрать диапазон прикладываемого напряжения и как оценить анодный ток.

Термолюминесцентные детекторы нашли повсеместное применение для индивидуальной дозиметрии. Объясните, каковы способы считывания информации, как улуч-шить дозовую ЭЗЧ дозиметров, подчеркните – набор детекторов и пульт единое целое.

Студент должен иметь представление о радиофотолюминесцентных дозиметрах, способе считывания информации, методах поддержания стабильности аппаратуры.

Приведите рисунок, показывающий спектр поглощения фотонов света для облу-ченного и необлучённого детекторов и, соответственно, спектры эмиссии света. Для ста-билизации чувствительности установки применяют периодическую в процессе считыва-ния показаний

партии детекторов либо установку стекла с окислами марганца, либо све-тового сигнала от источника стабильного свечения.

При изучении дозиметров с газоразрядными счётчиками студент должен понять, почему возможно измерение дозы или мощности дозы, когда сигнал не зависит от энер-гии фотонов (и сорта частиц), каковы пути улучшения дозовой ЭЗЧ.

Покажите, что для детекторов, имеющих избыточную чувствительность к фотонам малой энергии, используют перфорированные экраны из кадмия, олова. Требуется пони-мание зависимости скорости счёта от мощности дозы.

Нейтронное излучение характеризуется протяженным энергетическим спектром от миллиэлектронвольт до десятков МэВ.

В радиационной безопасности повсеместно применяют радиометры быстрых нейтронов на основе дисперсного комбинированного сцинтиллятора и необходимо пред-ставлять его ЭЗЧ и возможность её интерпретации пороговой функцией. Для детектиро-вания тепловых нейтронов используют дисперсные, насыщенные бором сцинтилляторы или коронные борные счётчики, а иногда наполненные ЗНе счётчики.

Студент должен понимать, какие возможности открывает метод предварительного замедления нейтронов во «всеволновых» счётчиках и дозиметрах.

Часть курса посвящена изучению радиометров-спектрометров.

В первую очередь, необходимо показать возможности, принцип работы и назначе-ние сцинтилляционных, полупроводниковых спектрометров. Объяснить, что такое при-борная форма линии, как связана ширина пика на полувысоте с дисперсией. Необходимо увязать методы обработки приборных спектров с решением интегральных уравнений. Необходимо представлять зависимость эффективности, формы линии и разрешения от объёма сцинтиллятора. Студент должен представлять достоинства и недостатки полупро-водниковых и сцинтилляционных спектрометров.

Для а-спектрометрии обычно используют кремниевые полупроводниковые детек-торы. Напомните студентам о зависимости спектра эмиссии из проб от толщины. Пока-жите зависимость формы импульса от ширины перехода.

Особое внимание уделите системам и сетям радиационного контроля, сбору и пе-редаче информации.

Автор(ы):

Крамер-Агеев Евгений Александрович, д.ф.-м.н., профессор