Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КРИПТОЛОГИИ И ДИСКРЕТНОЙ МАТЕМАТИКИ

ОДОБРЕНО

УМС ИИКС Протокол №8/1/2025 от 25.08.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕОРИЯ ИНФОРМАЦИИ

Направление подготовки (специальность)

[1] 10.03.01 Информационная безопасность

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	3-4	108- 144	32	32	0		17-35	0	ϵ
Итого	3-4	108- 144	32	32	0	0	17-35	0	

АННОТАЦИЯ

Целью преподавания дисциплины является изложение студентам основных понятий и методов теории информации с ее приложениями в современных информационных технологиях, ознакомление с методами количественной оценки информации и методами кодирования.

Задачи дисциплины:

- раскрытие содержания базовых понятий теории информации;
- изучение математических моделей источников информации и каналов связи;
- изучение методов кодирования дискретных источников информации;
- изучение методов помехоустойчивого кодирования для каналов связи с шумом;
- формирование представления о предельно допустимых значениях теоретико-информационных характеристик систем передачи информации.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью преподавания дисциплины является изложение студентам основных понятий и методов теории информации с ее приложениями в современных информационных технологиях, ознакомление с методами количественной оценки информации и методами кодирования.

Задачи дисциплины:

- раскрытие содержания базовых понятий теории информации;
- изучение математических моделей источников информации и каналов связи;
- изучение методов кодирования дискретных источников информации;
- изучение методов помехоустойчивого кодирования для каналов связи с шумом;
- формирование представления о предельно допустимых значениях теоретико-информационных характеристик систем передачи информации.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина является неотъемлемой составной частью профессиональной подготовки по направлению 10.03.01 «Информационная безопасность».

Изучение данной дисциплины призвано вырабатывать у выпускника такие качества, как строгость в суждениях, творческое мышление, организованность и работоспособность, дисциплинированность, самостоятельность и ответственность.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 [1] – Способен оценивать	3-ОПК-1 [1] – знать значение информации,
роль информации,	информационных технологий и информационной
информационных технологий и	безопасности для обеспечения объективных потребностей
информационной безопасности в	личности, общества и государства
современном обществе, их	У-ОПК-1 [1] – уметь представлять роль информации,
значение для обеспечения	информационных технологий и информационной

объективных потребностей личности, общества и государства	безопасности в современном обществе В-ОПК-1 [1] – владеть основными методами информационной безопасности
ОПК-3 [1] – Способен использовать необходимые математические методы для решения задач профессиональной деятельности	3-ОПК-3 [1] — основные математические методы для решения задач обеспечения защиты информации У-ОПК-3 [1] — уметь использовать основные математические методы для решения задач обеспечения защиты информации В-ОПК-3 [1] — владеть основными математическими методами для решения задач обеспечения защиты информации
ОПК-4 [1] – Способен применять необходимые физические законы и модели для решения задач профессиональной деятельности	3-ОПК-4 [1] — знать основные черты современной естественнонаучной картины мира и физические основы функционирования средств защиты информации У-ОПК-4 [1] — уметь объяснять физические принципы функционирования средств защиты информации В-ОПК-4 [1] — владеть основными принципами функционирования средств защиты информации

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские

исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий. Профессиональное Создание условий, 1. Использование воспитательного обеспечивающих, потенциала дисциплин

воспитание

формирование профессионально значимых установок: не производить, не копировать и не использовать программные и технические средства, не приобретённые на законных основаниях; не нарушать признанные нормы авторского права; не нарушать тайны передачи сообщений, не практиковать вскрытие информационных систем и сетей передачи данных; соблюдать конфиденциальность доверенной информации (В40)

"Информатика (Основы программирования)", Программирование (Объектноориентированное программирование)", "Программирование (Алгоритмы и структуры данных)" для формирования культуры написания и оформления программ, а также привития навыков командной работы за счет использования систем управления проектами и контроля версий. 2.Использование воспитательного потенциала дисциплины "Проектная практика" для формирования культуры решения изобретательских задач, развития логического мышления, путем погружения студентов в научную и инновационную деятельность института и вовлечения в проектную работу. 3. Использование воспитательного потенциала профильных

проекты по областям научных

дисциплин для формирования навыков цифровой гигиены, а также системности и гибкости мышления, посредством изучения методологических и технологических основ обеспечения информационной безопасности и кибербезопасности при выполнении и защите результатов учебных заданий и лабораторных работ по криптографическим методам защиты информации в компьютерных системах и сетях. 4.Использование воспитательного потенциала дисциплин " "Информатика (Основы программирования)", Программирование (Объектноориентированное программирование)", "Программирование (Алгоритмы и структуры данных)" для формирования культуры безопасного программирования посредством тематического акцентирования в содержании дисциплин и учебных заданий. 5. Использование воспитательного потенциала дисциплины "Проектная практика" для формирования системного подхода по обеспечению информационной безопасности и кибербезопасности в различных сферах деятельности посредством исследования и перенятия опыта постановки и решения научно-практических задач организациями-партнерами.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	5 Семестр						
1	Первый раздел	1-8	16/16/0		25	КИ-8	3-OПК-1, У-ОПК-1, В-ОПК-1, 3-ОПК-3, У-ОПК-3, В-ОПК-4, У-ОПК-4, В-ОПК-4
2	Второй раздел	9-16	16/16/0		25	КИ-16	3-ОПК-1, У-ОПК-1, В-ОПК-3, 3-ОПК-3, У-ОПК-3, В-ОПК-4, У-ОПК-4, В-ОПК-4
	Итого за 5 Семестр		32/32/0		50		
	Контрольные мероприятия за 5 Семестр				50	Э	3-OПК-1, У-ОПК-1, В-ОПК-3, У-ОПК-3, В-ОПК-3, 3-ОПК-4, У-ОПК-4, В-ОПК-4

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели Темы занятий / Содержание Лек., Пр./сем., Лаб.,
--

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		час.	час.	час.
	5 Семестр	32	32	0
1-8	Первый раздел	16	16	0
1 - 2	Введение.	Всего	аудиторн	ых часов
	Предмет и методы теории информации и кодирования.	4	2	0
	Содержание курса. Связь со смежными дисциплинами.	Онлай	ÍН	
	Информация, сигналы, данные. Определение информа-	0	0	0
	ции, ее аспекты. Источники информации и ее носители.			
3 - 4	Информация и энтропия.		аудиторн	ых часов
	Подходы к определению количества информации. Веро-	4	4	0
	ятностные оценки. Формулы Хартли и Шеннона. Энтро-	Онлай	ÍН	•
	пия и количество информации. Единицы информации.	0	0	0
	Энтропия источников взаимосвязных объектов, случай-			
	ных сигналов. Условная энтропия. Дифференциальная			
	энтропия.			
5 - 6	Сигналы, источники сообщений и их кодирование.	Всего	аудиторн	ых часов
	Типы сигналов. Дискретизация и восстановление сигна-	4	6	0
	лов. Спектральная плотность сигналов, ее свойства. Ча-	Онлай	ÍН	
	стота Найквиста, теорема Котельникова. Задачи интер-	0	0	0
	поляции и прореживания сигналов. Кодирование алфа-			
	вита. Дискретное кодирование. Префиксные коды.			
	Неравенство Крафта. Оптимальное кодирование.			
	Параметры кодов. Геометрический подход к кодированию.			
	Неравномерные коды Хемминга. Циклические коды.			
	Помехоустойчивое избыточное кодирование.			
	Корректирующие коды.			
7	Кодирование для каналов связи.	Всего	аудиторн	ых часов
	Количественные характеристики процесса передачи ин-	4	4	0
	формации. Классификация каналов связи, их математи-	Онлай	ÍН	
	ческие модели. Пропускная способность канала связи.	0	0	0
	Помехоустойчивость передачи информации. Критерии			
	верности. Теоремы Шеннона для каналов без помех и с			
	ними.			
9-16	Второй раздел	16	16	0
8 - 10	Дискретные ортогональные преобразования.	Всего	аудиторн	ых часов
	Частотные представления дискретных сигналов. Ортого-	4	6	0
	нальные преобразования дискретных сигналов. Матрич-	Онлай	ÍН	
	ная форма преобразований. Свойства дискретного пре-	0	0	0
	образования Фурье (ДПФ). Быстрое преобразование			
	Фурье. Дискретное преобразование Хартли (ДПХ), его			
	свойства. Многомерные ДПФ и ДПХ. Взаимосвязь ДПФ и			
	ДПХ. Теоретико-числовые преобразования. Преобра-			
	зования сигналов при их неравномерной дискретизации.			
11 - 12	Цифровая фильтрация и цифровые фильтры.	Всего	аудиторн	ых часов
	Частотное представление цифровых сигналов. Преобра-	4	2	0
	зование спектра цифрового сигнала. Характеристики	Онлай	ін	
	цифровых фильтров, их устойчивость. Рекурсивные и	0	0	0
	нерекурсивные фильтры. Медианная фильтрация, ее			
	особенности. Сложные медианные фильтры. Физическая			
	реализуемость цифровых фильтров. Погрешности при			
	реализации цифровых фильтров. Фильтрация многомер-			
	ных сигналов, многомерные цифровые фильтры.			

13	Цифровые свертки.	Всего а	удиторных	часов
	Математическое определение свертки, ее виды. Вычис-	2	2	0
	ление линейной свертки через круговую. Быстрая сверт-	Онлайн	I	
	ка. Секционированные свертки. Свертка двумерных	0	0	0
	цифровых сигналов.			
14 - 16	Алгоритмы преобразования информации.	Всего аудиторных часов		
	Классификация процедур и задач обработки информа-ции.	6	6	0
	Методы решения информационно-поисковых и по-исково-	Онлайн	I	
	оптимизационных задач. Цифровые алгоритмы	0	0	0
	интерполяции и прореживания. Восстановление утра-			
	ченных отсчетов. Явление Гиббса. Краевые эффекты, их			
	устранение. Особенности цифрового спектрального ана-			
	лиза.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Обучение проводится с использованием лекций и практических занятий.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(KII 1)
ОПК-1	3-ОПК-1	Э, КИ-8, КИ-16
	У-ОПК-1	Э, КИ-8, КИ-16
	В-ОПК-1	Э, КИ-8, КИ-16
ОПК-3	3-ОПК-3	Э, КИ-8, КИ-16
	У-ОПК-3	Э, КИ-8, КИ-16
	В-ОПК-3	Э, КИ-8, КИ-16
ОПК-4	3-ОПК-4	Э, КИ-8, КИ-16
	У-ОПК-4	Э, КИ-8, КИ-16
	В-ОПК-4	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
90-100	5 – «отлично»	A	последовательно, четко и логически
90-100			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89			Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»		по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
	3 — «удовлетворительно»		знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64		E	недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
			Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60	2 –	F	ошибки. Как правило, оценка
	«неудовлетворительно»		«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

1. 004 М 21 Комментарии к Доктрине информационной безопасности Российской Федерации. : , Малюк А.А., Полянская О.Ю., Москва: Горячая линия -Телеком, 2018

2. 004 М 21 Основы политики безопасности критических систем информационной инфраструктуры. Курс лекций. : учеб. пособие для вузов., Малюк А.А., Москва: Горячая линия -Телеком, 2018

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Студенты должны своевременно спланировать учебное время для поэтапного и системного изучения данной учебной дисциплины в соответствии с планом занятий.

Успешное освоение дисциплины требует от студентов активной работы во время занятий, выполнения всех домашних заданий, ознакомления с основной и дополнительной литературой, а также предполагает творческое участие студента путем планомерной, повседневной работы.

В процессе изучения учебной дисциплины необходимо обратить внимание на самоконтроль. Требуется регулярно отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Систематическая индивидуальная работа, постоянная активность на занятиях, готовность ставить и обсуждать актуальные проблемы курса — залог успешной работы и положительной оценки.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Целью данных методических рекомендаций является повышение эффективности теоретических и практических занятий по дисциплине вследствие более четкой их организации преподавателем.

Данные рекомендации разработаны на основе многолетнего опыта преподавания и публикаций учебно-методического характера, а также многочисленных отечественных и зарубежных научных публикации по рассматриваемой тематике.

При изучении дисциплины рекомендуется использовать следующие средства обучения:

- рабочую программу дисциплины;

- рекомендуемую основную и дополнительную литературу;
- методические указания, пособия и учебники;
- фонд оценочных средств.

Со стороны преподавателя должен быть установлен контакт со студентами, и они должны быть информированы о порядке прохождения курса, его особенностях, учебнометодическом обеспечении по данной дисциплине. Преподаватель дает методические рекомендации обучаемым по самостоятельному изучению проблем, характеризуя пути и средства достижения поставленных перед ними задач, высказывает советы и рекомендации по изучению учебной литературы и самостоятельной работе.

Учебный курс строится на интегративной основе и включает в себя как теоретические знания, так и практические навыки, получаемые студентами в ходе аудиторных и самостоятельных занятий.

Данная дисциплина выполняет функции теоретической и практической подготовки студентов.

Содержание учебного курса, его объем и характер обусловливают необходимость оптимизации учебного процесса в плане отбора материала обучения и методики его организации, а также контроля текущей учебной работы. В связи с этим возрастает значимость и изменяется статус внеаудиторной (самостоятельной) работы, которая становится полноценным и обязательным видом учебно-познавательной деятельности студентов. При изучении курса самостоятельная работа включает:

- самостоятельное ознакомление студентов с теоретическим материалом, представленным в отечественных и зарубежных научно-практических публикациях;
- самостоятельное изучение тем учебной программы, достаточно хорошо обеспеченных литературой и сравнительно несложных для понимания;
- подготовку к практическим занятиям по тем разделам, которые предполагают самостоятельную проработку материала учебных пособий.

Автор(ы):

Иваненко Виталий Григорьевич, д.т.н., профессор