Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ОБЩЕЙ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ КАФЕДРА ЭЛЕКТРОТЕХНИКИ

ОДОБРЕНО НТС ИФИБ

Протокол № 3.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭЛЕКТРОТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ

Направление подготовки (специальность)

[1] 12.03.04 Биотехнические системы и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	6	216	32	32	32		66	0	Э
Итого	6	216	32	32	32	16	66	0	

АННОТАЦИЯ

В курсе освещаются основные разделы метрологии, теория измерений, вероятностный и информационный подход к оценке погрешностей, обработка результатов измерения: современные электронные приборы и их применение для целей измерения электрических величин.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В курсе освещаются основные разделы метрологии, теория измерений, вероятностный и информационный подход к оценке погрешностей, обработка результатов измерения: современные электронные приборы и их применение для целей измерения электрических величин.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Настоящая учебная дисциплина является базовой при подготовке студентов инженернофизического профиля, специализирующихся в области исследования электрофизических процессов микро, нано, импульсной и сильноточной электроники, а также при конструировании элементов автоматики, электроники и ускорительной техники.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции ОПК-3 [1] — Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики биотехнических систем и технологий	Код и наименование индикатора достижения компетенции 3-ОПК-3 [1] — Знать подходы к проведению экспериментальных исследований и измерений, обработке и представлению полученных данных У-ОПК-3 [1] — Уметь проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики биотехнических систем и технологий В-ОПК-3 [1] — Владеть представлением полученных экспериментальных данных с учетом специфики биотехнических систехнических систем и технологий.
ОПК-5 [1] — Способен участвовать в разработке текстовой, проектной и конструкторской документации в соответствии с нормативными требованиями	3-ОПК-5 [1] — Знать нормативные требования к разработке текстовой, проектной и конструкторской документации У-ОПК-5 [1] — Уметь участвовать в разработке текстовой, проектной и конструкторской документации в соответствии с нормативными требованиями В-ОПК-5 [1] — Владеть разработке текстовой, проектной и конструкторской документации в соответствии с нормативными требованиями

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Интеллектуальное воспитание	Создание условий, обеспечивающих, формирование культуры умственного труда (В11)	Использование воспитательного потенциала дисциплин гуманитарного, естественнонаучного, общепрофессионального и профессионального модуля для формирования культуры умственного труда посредством вовлечения студентов в учебные исследовательские задания, курсовые работы и др.
Профессиональное и трудовое воспитание	Создание условий, обеспечивающих, формирование глубокого понимания социальной роли профессии, позитивной и активной установки на ценности избранной специальности, ответственного отношения к профессиональной деятельности, труду (В14)	1.Использование воспитательного потенциала дисциплин естественнонаучного и общепрофессионального модуля для: -формирования позитивного отношения к профессии инженера (конструктора, технолога), понимания ее социальной значимости и роли в обществе, стремления следовать нормам профессиональной этики посредством контекстного обучения, решения практико-ориентированных ситуационных задачформирования устойчивого интереса к профессиональной деятельности, способности критически, самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; -формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: -формирования

		навыков системного видения роли и
		значимости выбранной профессии в
		социально-экономических отношениях
		через контекстное обучение
Профессиональное и	Создание условий,	Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин
	формирование	общепрофессионального модуля для: -
	психологической	формирования устойчивого интереса к
	готовности к	профессиональной деятельности,
	профессиональной	потребности в достижении результата,
	деятельности по	понимания функциональных
	избранной профессии	обязанностей и задач избранной
	(B15)	профессиональной деятельности,
		чувства профессиональной
		ответственности через выполнение
		учебных, в том числе практических
		заданий, требующих строгого
		соблюдения правил техники
		безопасности и инструкций по работе с
		оборудованием в рамках лабораторного
		практикума.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	5 Семестр						
1	Первый раздел	1-8	16/16/16		25	к.р-8	3-ОПК-3, У-ОПК-3, В-ОПК-3, 3-ОПК-5, У-ОПК-5, В-ОПК-5
2	Второй раздел	9-16	16/16/16		25	к.р-16	У-ОПК-3, В-ОПК-3, 3-ОПК-5, У-ОПК-5, В-ОПК-5, 3-ОПК-3
	Итого за 5 Семестр		32/32/32		50		
	Контрольные				50	Э	3-ОПК-3,

мероприятия	3 a	5			У-ОПК-3,
Семестр					В-ОПК-3,
_					3-ОПК-5,
					У-ОПК-5,
					В-ОПК-5

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
к.р	Контрольная работа
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	5 Семестр	32	32	32
1-8	Первый раздел	16	16	16
1	Значение метрологии, стандартизации и сертификации	Всего а	удиторных	часов
	в прогрессе науки, техники. Основные понятия,	2	2	2
	связанные с объектами измерения. Теоретическая,	Онлайн	I	
	прикладная и законодательная метрология.	0	0	0
	Государственна			
	Значение метрологии, стандартизации и сертификации в			
	прогрессе науки, техники. Основные понятия, связанные с			
	объектами измерения. Теоретическая, прикладная и			
	законодательная метрология. Государственная система			
	обеспечения единства измерения РФ.			
2	Основные характеристики физических процессов:	Всего а	удиторных	часов
	детерминированных и случайных. Классификация	2	2	2
	методов и средств измерений электрических	Онлайн	I	•
	Основные характеристики физических процессов:	0	0	0
	детерминированных и случайных. Классификация методов			
	и средств измерений электрических			
3	Виды измерений. Структурная схема измерений и	Всего а	удиторных	часов
	анализ погрешностей измерения. Случайные и	2	2	2
	систематические погрешности. Вероятностные основы	Онлайн	I	
	анализа случайных погрешностей. Законы	0	0	0
	распределения случайны			
	Виды измерений. Структурная схема измерений и анализ			
	погрешностей измерения. Случайные и систематические			
	погрешности. Вероятностные основы анализа случайных			
	погрешностей. Законы распределения случайных			
	погрешностей. Прямые однократные равноточные			
	измерения. Многократные равноточные и неравноточные			
	измерения. Обработка результатов измерения. Точность,			
	правильность и форма представления результатов			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	измерения.			
4	Косвенные измерения. Погрешности косвенных	Всего	аудитор	ных часов
	измерений. Критерий ничтожных погрешностей.	2	2	2
	Суммирование погрешностей. Информационные	Онлай	H	1
	основы анализа случайных погрешностей.	0	0	0
	Классификация и структура постро			
	Косвенные измерения. Погрешности косвенных			
	измерений. Критерий ничтожных погрешностей.			
	Суммирование погрешностей. Информационные основы			
	анализа случайных погрешностей. Классификация и			
	структура построения электронных приб			
5	Аналоговые и цифровые измерительные генераторы	Всего	аудитор	ных часов
	синусоидальных колебаний – низкочастотные и	2	$\frac{1}{2}$	2
	высокочастотные. Импульсные генераторы.	Онлай	<u> </u>	
	Генераторы сигналов специальной формы.	0	0	0
	Аналоговые и цифровые измерительные генераторы			o o
	синусоидальных колебаний – низкочастотные и			
	высокочастотные. Импульсные генераторы. Генераторы			
	сигналов специальной формы.		1	
	Электронные приборы, измеряющие параметры и			
	характеристики электрического сигнала.			
6	Двухканальные аналоговые осциллографы. Основные	Всего	<u> </u>	ных часов
U	узлы. Режимы работы. Внутренняя и внешняя	2	<u>аудитор.</u> 2	2
	синхронизация. Требования, предъявляемые к выбору	Онлай		
	осциллографа и его метрологические характеристики.	0		
	Двухканальные аналоговые осциллографы. Основные	0	0	0
	узлы. Режимы работы. Внутренняя и внешняя			
	синхронизация. Требования, предъявляемые к выбору			
7	осциллографа и его метрологические характеристики.	D		
7	Цифровые двухканальные осциллографы.	Всего		ных часов
	Преимущества и недостатки в сравнении с	2	2	2
	аналоговыми. Люминофорные осциллографы.	Онлай		
	Цифровые двухканальные осциллографы. Преимущества и	0	0	0
	недостатки в сравнении с аналоговыми. Люминофорные			
	осциллографы.	_		
8	Методы измерения тока и напряжения. Аналоговые			ных часов
	электронные вольтметры постоянного и переменного	2	2	2
	тока. Погрешности измерений, влияние формы кривой	Онлай		
	измеряемого напряжения на показания вольтметров.	0	0	0
	Методы измерения тока и напряжения. Аналоговые			
	электронные вольтметры постоянного и переменного тока.			
	Погрешности измерений, влияние формы кривой			
	измеряемого напряжения на показания вольтметров.			
9-16	Второй раздел	16	16	16
9	Цифровые вольтметры постоянного и переменного		· ·	ных часов
	тока. АЦП с кодо, время, частотно – импульсным	2	2	2
	преобразованием. Цифровые вольтметры с	Онлай	H	
	двухтактным интегрированием. Аддитивные и	0	0	0
	мультипликативные составля		1	
	Цифровые вольтметры постоянного и переменного тока.		1	
	АЦП с кодо, время, частотно – импульсным		1	
	преобразованием. Цифровые вольтметры с двухтактным		1	

	T A			1	
	интегрированием. Аддитивные и мультипликативные				
1.0	составляющие погрешности цифровых вольтметров.				
10	Методы и погрешности измерения частоты,	Всего аудиторных часов			
	временных интервалов, фазы.	2	2	2	
	Методы и погрешности измерения частоты, временных	Онлай	Н		
	интервалов, фазы.	0	0	0	
11	Методы и погрешности измерения параметров	Всего	аудитор	ных часов	
	компонент электрических цепей.	2	2	2	
	Методы и погрешности измерения параметров компонент	Онлай	Н		
	электрических цепей.	0	0	0	
12	Автоматизация измерений. Измерительные системы,	Всего	аудитор	ных часов	
	структура построения, условия совместимости.	2	2	2	
	Современные приборные интерфейсы и их	Онлай	IH .		
	характеристики. Функции, выполняемые	0	0	0	
	микропроцессорами в электронных				
	Автоматизация измерений. Измерительные системы,				
	структура построения, условия совместимости.				
	Современные приборные интерфейсы и их				
	характеристики. Функции, выполняемые				
	микропроцессорами в электронных измерительных				
	системах.				
13	Пути улучшения метрологических характеристик	Всего	аудитор	ных часов	
	приборов с микропроцессором. Микропроцессоры в	2	2	2	
	цифровых мультиметрах, частотомерах, мостах	Онлай	TH .		
	переменного тока, логгерах, осциллографах.	0	0	0	
	Анализатор логических				
	Пути улучшения метрологических характеристик				
	приборов с микропроцессором. Микропроцессоры в				
	цифровых мультиметрах, частотомерах, мостах				
	переменного тока, логгерах, осциллографах. Анализатор				
	логических состояний и временных диаграмм при				
	тестировании цифровых устройств.				
14	Виртуальные приборы на основе персонального	Всего	аудитор	ных часов	
	компьютера. Встроенные в ПК и внешние устройства	2	2	2	
	сбора данных. Виртуальные двухканальные	Онлай	Ή		
	осциллографы, анализаторы спектра частоты,	0	0	0	
	мультиметры, измерительн				
	Виртуальные приборы на основе персонального				
	компьютера. Встроенные в ПК и внешние устройства				
	сбора данных. Виртуальные двухканальные				
	осциллографы, анализаторы спектра частоты,				
	мультиметры, измерительные генераторы.				
15	Государственная система стандартизации. Основные	Всего	аудитор	ных часов	
	принципы и методы стандартизации. Категории и	2	2	2	
	виды стандартов Российской Федерации.	Онлай	Н		
	Государственные и отраслевые системы стандартов.	0	0	0	
	Государственный на				
	Государственная система стандартизации. Основные				
	принципы и методы стандартизации. Категории и виды				
	стандартов Российской Федерации. Государственные и				
	отраслевые системы стандартов. Государственный надзор				
	за соблюдением стандартов. Основные вопросы				

	стандартизации в областях: электронной техники,			
	микроэлектроники, систем автоматического управления и			
	вычислительной техники. Международная организация по			
	стандартизации ("International Organization for			
	standardization" - ИСО).			
16	Государственная система сертификации. Термины и	Всего а	удиторных	часов
	определения. Организационная база сертификации.	2	2	2
	Объекты сертификации. Порядок проведения	Онлайн	I	
	сертификации. Органы по сертификации и	0	0	0
	испытательные лаборатори			
	Государственная система сертификации. Термины и			
	определения. Организационная база сертификации.			
	Объекты сертификации. Порядок проведения			
	сертификации. Органы по сертификации и испытательные			
	лаборатории. Аккредитация в органах по сертификации.			
	Сертификация систем качества.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание		
	5 Семестр		
1 - 4	Изучение методов обработки результатов измерений.		
	Изучение методов обработки результатов измерений.		
5 - 8	Исследование метрологических характеристик электронно-лучевого		
	осциллографа и оценка		
	Исследование метрологических характеристик электронно-лучевого осциллографа и		
	оценка		
	погрешностей измерений.		
9 - 12	Измерения с помощью двухканального и стробоскопического осциллографа и		
	осциллографа со		
	Измерения с помощью двухканального и стробоскопического осциллографа и		
	осциллографа со		
	сменными блоками.		
13 - 16	Анализ и оценка погрешностей измерений напряжения аналоговыми и		
	цифровыми вольтметрами.		
	Анализ и оценка погрешностей измерений напряжения аналоговыми и цифровыми		
	вольтметрами.		

Недели	Темы занятий / Содержание					
	5 Семестр					
1 - 2	1. Семинар. Параметры аналоговых сигналов.					
	1. Значения сигналов различной формы: мгновенное, среднее, средневыпрямленное,					
	среднеквадратическое, амплитудное.					
	2. Типы амперметров и виды значений, на которые они реагируют, уравнение шкалы					
	магнитоэлектрического микроамперметра.					
	3. Схемы электромеханических вольтметров постоянного переменного тока.					
	4. Алгоритм расчета показаний амперметров и вольтметров при несинусоидальном					
	сигнале. Введение градуировочных поправок.					
	5. Расчет показаний вольтметров и амперметров с различным преобразованием для					
	сигналов различной формы: прямоугольные импульсы, двухполярные прямоугольные					
	импульсы, треугольное напряжение, пилообразное напряжение, синусоида, синусоида					
	после однополупериодного выпрямления.					
3 - 4	2. Семинар. Различные виды разверток осциллографа. Влияние входного					
	сопротивления и входных емкостей на искажение формы сигнала.					
	1. Изображения сигналов на экране осциллографа для развертывающих напряжений					
	различной формы: синусоида, прямоугольный импульс, треугольное напряжение.					
	2. Влияние входной емкости осциллографа на искажения форы коротких импульсов.					
	3. Влияние емкости разделительного конденсатора закрытого входа осциллографа на					
	искажение формы импульсов большой длительности и возрастание погрешности					
	измерений низкочастотных сигналов.					
	4. Расчет длительности неискаженного фронта импульса на основе значения полосы					
	пропускания. Формула Котельникова.					
5 - 6	3. Семинар. Измерение параметров сигнала двухканальным осциллографом.					
	Контрольная работа семестрового контроля (1 час).					
	2. Оценки погрешностей амплитудных и временных параметров сигнала при					
	измерении осциллографом.					
	3 Измерение тока.					
	4 Измерение разности фаз.					
	5 Измерение мощности.					
	6. Схема измерения ВАХ диода.					
7 - 8	4. Семинар. Оценка результатов измерения напряжения аналоговыми,					
	цифровыми и электронными вольтметрами с различными преобразователями.					
	1. Типы преобразователей вольтметров. Алгоритм расчета показаний вольтметра для					
	сигналов различной формы: прямоугольный импульс, меандр, пилообразное					
	напряжение, синусоида.					
	2. Характеристики, по которым происходит выбор вольтметра для измерений					
	синусоидальных сигналов.					
0 10	3. Класс точности вольтметров					
9 - 10	5. Семинар. Погрешности косвенных измерений.					
	1. Суммирование погрешностей.					
	2. Расчет погрешностей прямых измерений.					
11 12	3. Расчет погрешностей косвенных измерений					
11 - 12	6. Семинар. Статистическая обработка результатов измерений.					
	1. Определение равноточных и неравноточных измерений.					
	2. Алгоритм расчета равноточных измерений.					
	3. Алгоритм расчета неравноточных измерений.					
12 14	4. Рекомендации по повышению точности измерений.					
13 - 14	7. Семинар. Применение измерительной системы на основе персонального					

	компьютера и платы ввода/вывода для измерения параметров цифровых микросхем.
	1. Схема измерения таблицы истинности интегральной микросхемы с помощью платы ввода/вывода данных в компьютер.
	2. Таблица истинности интегральной логической микросхемы 2И-НЕ. 3. Алгоритм программирования платы ввода/вывода.
15 - 16	8. Семинар. Измерительная система на основе измерительных модулей. 1. Применение осциллографического модуля. Функциональные возможности.
	2. Применение генераторного модуля для измерений. Интерфейс управления модулем.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Проводится обучение в форме лекций, практических занятий в активной форме.

В процессе освоения курса студенты выполняют большое число заданий, которые ориентированы на формирование у них навыков активной творческой деятельности, необходимой для их успешного выполнения.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ОПК-3	3-ОПК-3	Э, к.р-8, к.р-16
	У-ОПК-3	Э, к.р-8, к.р-16
	В-ОПК-3	Э, к.р-8, к.р-16
ОПК-5	3-ОПК-5	Э, к.р-8, к.р-16
	У-ОПК-5	Э, к.р-8, к.р-16
	В-ОПК-5	Э, к.р-8, к.р-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил

			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	- 4 – «хорошо»	С	если он твёрдо знает материал, грамотно и
			по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
			Оценка «неудовлетворительно»
	0 2— «неудовлетворительно»	F	выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			
пиже оо			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А 92 Теоретические основы электротехники. Линейные электрические цепи : учебное пособие для вузов, Атабеков Г. И., Санкт-Петербург: Лань, 2021
- 2. ЭИ А 92 Теоретические основы электротехники. Нелинейные электрические цепи. Электромагнитное поле : учебное пособие, Купалян С. Д. [и др.], Санкт-Петербург: Лань, 2020

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Основное условие успеха-систематические занятия. Конспектировать свои мысли, задавать вопросы, учиться давать определения, прорабатывать материал, пользоваться разными учебниками (основной и дополнительной литературой).

Перед посещением лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

Перед посещением практического занятия уясните его тему и самостоятельно изучите связанные с ней понятия и методы решения задач. Перед решением задач активно участвуйте в обсуждении с преподавателем основных понятий, связанных с темой практического занятия. В процессе решения задач ведите дискуссию с преподавателем о правильности применения методов их решения.

Перед выполнением лабораторной работы (до проведения занятия) проведите самостоятельно подготовку к работе, изучив основные теоретические положения и методические указания, знание которых необходимо для осмысленного выполнения работы. Соблюдайте требования техники безопасности, для чего необходимо прослушать разъяснения о правильности поведения в лаборатории, ознакомиться с инструкцией по охране труда и технике безопасности в лаборатории и расписаться в журнале по технике безопасности. В процессе выполнения работы следует постоянно общаться с преподавателем, по возможности избегая неправильных действий. Основные результаты экспериментов, зафиксированные в письменном виде, предъявляются в конце занятия на утверждение преподавателя.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Давать перечень основной и дополнительной литературы. Напоминать основные выводы предыдущих занятий. Освещать важные вопросы. Проводить контроль знаний студентов.

На первой вводной лекции сделать общий обзор содержания курса. Дать перечень рекомендованной основной литературы и вновь появившихся литературных источников. Перед изложением текущего лекционного материала кратко напомнить об основных выводах по материалам предыдущей лекции. Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

На семинаре следует подробно рассматривать примеры задач, приведенные на лекциях. В процессе разработки задач вести дискуссию со студентами. Отмечать студентов, наиболее активно участвующих в решении задач и дискуссиях.

На первом занятии рассказать о лабораторном практикуме в целом (о целях практикума, инструментальных средствах для выполнения лабораторных работ, о порядке отчета по лабораторным работам), провести инструктаж по технике безопасности при работе в лаборатории.

При принятии отчета по каждой лабораторной работе обязательно побеседовать с каждым студентом, задавая контрольные вопросы, направленные на понимание изучаемой в лабораторной работе проблемы.

Автор(ы):

Пашенцев Владимир Николаевич, к.ф.-м.н., доцент