Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МАТЕРИАЛЫ ФОТОНИКИ

Направление подготовки (специальность)

[1] 12.03.03 Фотоника и оптоинформатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	3	108	30	0	30		48	0	3
Итого	3	108	30	0	30	16	48	0	

АННОТАЦИЯ

Развитие и совершенствование устройств оптики, оптоэлектроники, электроники и лазерной техники невозможно без материалов с уникальными физическими свойствами. Такие материалы используются при создании фотонных структур для лазеров, светодиодов, фотоприемников, фотовольтаических устройств, высокопроизводительных устройств записи, обработки информации, хранения данных, коммуникаций, вычислительной техники, а также для развития энергосберегающих технологий, биомедицины, сенсорики и т.д. В настоящее время исследование и внедрение современных материалов и структур реализуются в рамках глобальных международных проектов. Студенты при изучении курса «Материалы фотоники» получат знания и навыки в области синтеза и исследования полупроводниковых структур, в частности, нитевидных нанокристаллов и квантовых точек, структуры и основных свойств активированных диэлектрических материалов (кристаллов, стекол, стеклокерамики), а также их применения в устройствах, приборах и системах для полупроводниковой оптоэлектроники, волноводной фотоники, нелинейной, дифракционной, интерференционной, биомедицинской, сенсорной и дисплейной оптики.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель дисциплины состоит в освоении современных физических и химических методов получения и исследований материалов, в освоении практических навыков в области фотоники, волоконной оптики, лазерных материалов, оптических методов записи и хранения информации.

Цель преподавания дисциплины:

- изучение основных понятия и определений курса «Материалы фотоники»,
- -изучение классификации материалов для фотоники, основные физико-химические свойства и способы получения монокристаллов, оптических стекол и керамики, углеродных наноструктур; методы получения и использование фотонных кристаллов и органических и неорганических люминофоров.
- -усвоение студентами принципов создания и использования оптических материалов в электронике, фотонике, , биотехнологиях, сенсорах.
 - освоение терминологии, используемой в сфере технологий материалов для фотоники.

Основными задачами освоения дисциплины являются:

- изучение эффектов, определяющих особые закономерности протекания различных физико-химических процессов в производстве материалов фотоники;
 - обзор различных технологических процессов создания таких материалов;
- ознакомление с современными достижениями по созданию и применению оптических материалов;
- развитие способности ориентироваться в современных достижениях в области фотоники, возможности использования современных технологий в собственных разработках;
- знакомство с современными экспериментальными средствами исследования материалов фотоники, в том числе с нанометровым пространственным разрешением.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Данная дисциплина логически связана с такими дисциплинами, как: Общая физика, Введение в физику твердого тела, Экспериментальные методы в ФКС, Фотоника.

«Входные» знания, умения и готовности обучающегося, необходимые при освое-нии данной дисциплины и приобретенные в результате освоения предшествующих дисци-плин: Физика конденсированного состояния, Введение в физику твердого тела, Модуль Общая физика, Модуль Математика

Изучение дисциплины базируется на компетенциях, сформированных у обучающихся в результате освоения следующих прослушанных ранее курсах. Основные положения курса «Материалы фотоники» должны/могут быть использованы при изучении дисциплин: Физика полупроводников для фотоники, Технологические основы фотоники и т.д. Также, знание материалов данной дисциплины необходимо при выполнении курсового и дипломного проектирования, научно-исследовательской работы, а также для практической работы.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессионально й деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный	Код и наименование индикатора достижения профессиональной компетенции
		стандарт-ПС, анализ опыта)	
	научно-иссл	педовательский	
Анализ	элементная база,	ПК-5.1 [1] - Способен	3-ПК-5.1[1] - Знать
поставленной	системы и технологии	применять	фундаментальные
задачи	интегральной,	современные	основы физики
исследований в	волоконной и	фундаментальные	конденсированного
области фотоники	градиентной оптики, а	знания из областей	состояния, физики
И	также микрооптики;	физики	полупроводников и
оптоинформатики	элементная база	конденсированного	физики наносистем в
на основе подбора	полупроводниковых,	состояния, физики	объеме программы
и изучения	волоконных и	полупроводников и	академического
литературных и	планарных лазеров;	физики наносистем	бакалавриата,
патентных	элементная база,	для анализа	необходимые для
источников	системы, материалы,	принципов	анализа принципов
	методы и технологии,	функционирования	функционирования
	обеспечивающие	радиофотонных и	радиофотонных и
	оптическую передачу,	электронно-	электронно-
	прием, обработку,	оптических устройств	оптических устройств;
	запись и хранение		У-ПК-5.1[1] - Уметь

информации; элементная база и системы преобразования и отображения информации; элементная база и системы на основе наноразмерных и фотоннокристаллически х структур; системы оптических и квантовых вычислений и оптические компьютеры; оптические системы искусственного интеллекта; устройства и системы компьютерной фотоники

Основание: Профессиональный стандарт: 40.011

применять полученные знания, а также проводить научный поиск актуальных опубликованных результатов и последних достижений в области радиофотонных технологий и систем; В-ПК-5.1[1] - Владеть навыками анализа и синтеза устройств радиофотоники с целью выделить их наиболее существенные электронные, оптические и иные функциональные характеристики, и сделать вывод о влияющих на них физических процессах

проектно-конструкторский

Разработка отдельных блоков программ, их отладка и настройка для решения задач фотоники и оптоинформатики, включая типовые залачи проектирования, исследования и контроля элементов, устройств и систем фотоники и оптоинформатики

элементная база. системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики; элементная база полупроводниковых, волоконных и планарных лазеров; элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации; элементная база и системы преобразования и отображения информации; элементная база и системы на основе наноразмерных и

ПК-6 [1] - способен проводить поверку, наладку и регулировку оборудования, настройку программных средств, используемых для разработки, производства и настройки приборной техники

Основание: Профессиональный стандарт: 29.004

3-ПК-6[1] - Знать общие принципы, правила и методы поверки, наладки и регулировки оборудования, настройки программных средств; У-ПК-6[1] - Уметь подготавливать испытательное оборудование и измерительную аппаратуру, выбрать метод поверки, наладки и регулировки оборудования, настройки программных средств; В-ПК-6[1] - Владеть навыками тестирования оборудования, настройки программных средств

	1		
	фотоннокристаллически		
	х структур; системы		
	оптических и квантовых		
	вычислений и		
	оптические		
	компьютеры;		
	оптические системы		
	искусственного		
	интеллекта; устройства		
	и системы		
	компьютерной		
	фотоники		
	производственн	о-технологический	
Осуществление	элементная база,	ПК-7 [1] - способен к	3-ПК-7[1] - Знать
наладки,	системы и технологии	разработке	требования,
настройки и	интегральной,	технических заданий	предъявляемые к
опытной проверки	волоконной и	на конструирование	технической
отдельных видов	градиентной оптики, а	отдельных узлов	документации при
элементов,	также микрооптики;	приспособлений,	конструировании
устройств и	элементная база	оснастки и	отдельных узлов
систем фотоники и	полупроводниковых,	специального	приспособлений,
радиофотоники в	волоконных и	инструмента,	оснастки и
процессе НИОКР	планарных лазеров;	предусмотренных	специального
и опытного	элементная база,	технологией	инструмента;
производства	системы, материалы,		У-ПК-7[1] - Уметь
	методы и технологии,	Основание:	анализировать
	обеспечивающие	Профессиональный	исходные данные и
	оптическую передачу,	стандарт: 40.011	технические
	прием, обработку,	-	требования,
	запись и хранение		предъявляемые к
	информации;		конструируемым
	элементная база и		узлам
	системы		приспособлений,
	преобразования и		оснастки и
	отображения		специального
	информации;		инструмента;
	элементная база и		формулировать и
	системы на основе		обосновывать
	наноразмерных и		требования к
	фотоннокристаллически		разрабатываемым
	х структур; системы		узлам и элементам;
	оптических и квантовых		В-ПК-7[1] - Владеть
	вычислений и		знаниями по вопросам
	оптические		стандартизации,
	компьютеры;		метрологии, технике
	оптические системы		измерений и контроля
	искусственного		качества навыками
	интеллекта; устройства		разработки проектной
	и системы		и рабочей технической
	компьютерной		документации
	фотоники		Zar) manimum
Осуществление	элементная база,	ПК-8 [1] - способен	3-ПК-8[1] - Знать
ээдиотыны	onementalian ousa,	THE O [1] CHOCOUCH	S THE OLI SHAID

наладки, настройки и опытной проверки отдельных видов элементов, устройств и систем фотоники и радиофотоники в процессе НИОКР и опытного производства

системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики; элементная база полупроводниковых, волоконных и планарных лазеров; элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации; элементная база и системы преобразования и отображения информации; элементная база и системы на основе наноразмерных и фотоннокристаллически х структур; системы оптических и квантовых вычислений и оптические компьютеры; оптические системы искусственного интеллекта; устройства и системы компьютерной

фотоники

разрабатывать оптимальные решения при создании продукции приборостроения с учетом требований качества, стоимости, сроков исполнения, конкурентоспособност и и безопасности жизнедеятельности, а также экологической безопасности

Основание: Профессиональный стандарт: 40.037 эксплуатационные факторы, их предельнодопустимые уровни воздействия на человека, технику и окружающую среду при эксплуатации техники и технологий профессиональной деятельности; элементную базу, используемую в изделиях фотоники и оптоинформатики основные области применения устройств фотоники и оптоинформатики; У-ПК-8[1] - Уметь анализировать технические решения при создании продукции приборостроения с учетом требований качества, стоимости, сроков исполнения, конкурентоспособност и и безопасности жизнедеятельности, а также экологической безопасности обосновывать предлагаемые технические решения при создании продукции приборостроения подбирать по заданным параметрам и характеристикам элементную базу; В-ПК-8[1] - Владеть методами работы с научнотехнической литературой и информацией

опасные и вредные

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели Задачи воспитания (код) Воспитательный потенциал	Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
---	------------------	-------------------------	--------------------------

воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное	профессиональное развитие
	развитие и	посредством выбора студентами
	профессиональные	индивидуальных образовательных
	решения (В18)	траекторий, организации системы
	решения (Вто)	общения между всеми участниками
		образовательного процесса, в том
		числе с использованием новых
Песформации	Conveyerance	информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала профильных дисциплин
	формирование	«Введение в специальность»,
	ответственности и	«Введение в технику физического
	аккуратности в работе с	эксперимента», «Измерения в микро-
	опасными веществами и	и наноэлектронике»,
	при требованиях к нормам	«Информационные технологии в
	высокого класса чистоты	физических исследованиях»,
	(B35)	«Экспериментальная учебно-
		исследовательская работа» для: -
		формирования навыков безусловного
		выполнения всех норм безопасности
		на рабочем месте, соблюдении мер
		предосторожности при выполнении
		исследовательских и
		производственных задач с опасными
		веществами и на оборудовании
		полупроводниковой
		промышленности, а также в
		помещениях с высоким классом
		чистоты посредством привлечения
		действующих специалистов
		полупроводниковой промышленности
		к реализации учебных дисциплин и
		сопровождению проводимых у
		студентов практических работ в этих
		организациях, через выполнение
		студентами практических и
		лабораторных работ, в том числе с
		использованием современных
		САПРов для моделирования
		компонентной базы электроники,
		измерительного и технологического
		оборудования на кафедрах,
		лабораториях и центрах ИНТЭЛ;
		2.Использование воспитательного
		потенциала профильных дисциплин
		«Спецпрактикум по физике

наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности - формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	6 Семестр						
1	Первый раздел. Теоретические основы и методы получения кристаллических материалов для фотоники	1-8	16/0/16		25	Кл-8	3-ПК-5.1, У-ПК-5.1, B-ПК-5.1, 3-ПК-6, У-ПК-6, B-ПК-6, 3-ПК-7, У-ПК-7
2	Второй раздел. Технология получения некристаллических материалов и керамики	9-15	14/0/14		25	УО-15	3-ПК-7, У-ПК-7, В-ПК-7, 3-ПК-8, У-ПК-8, В-ПК-8
	Итого за 6 Семестр		30/0/30		50		
	Контрольные мероприятия за 6 Семестр * – сокращенное наим				50	3	3-ПК-5.1, У-ПК-5.1, В-ПК-5.1, 3-ПК-6, У-ПК-6, В-ПК-7, У-ПК-7, В-ПК-7, У-ПК-7, В-ПК-8, У-ПК-8, В-ПК-8,

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
Кл	Коллоквиум
УО	Устный опрос
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
----------------------------------	-------	-----------	-------

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		час.	час.	час.
	6 Семестр	30	0	30
1-8	Первый раздел. Теоретические основы и методы	16	0	16
	получения кристаллических материалов для фотоники			
1 - 3	Тема 1 ПРОЦЕССЫ ТЕПЛО- И МАССОПЕРЕНОСА	Всего	аудиторн	ых часов
	Лекция 1.	6	0	4
	1.1 Потенциальные поля и потоки субстанций	Онлай	, IH	I .
	1.2 Взаимосвязанность потоков различных субстанций.	0	0	0
	Неравновесная			
	термодинамикадите здесь подробное описание пункта			
	Лекция 2			
	2.1 Дифференциальные уравнения переноса теплоты			
	2.2 Дифференциальное уравнение переноса теплоты			
	в движущейся жидкости			
	2.3 Дифференциальное уравнение переноса вещества			
	в движущейся среде			
	Лекция 3			
	3.1 Дифференциальное уравнение движения несжимаемой			
	жидкости			
	3.2 Уравнение неразрывности и расхода			
4 - 5	ТЕМА 2 ПРИНЦИП ПОДОБИЯ В	Всего	аудиторн	ых часов
	ТЕХНОЛОГИЧЕСКИХ РАСЧЕТАХ	4	0	4
	Лекция 4	Онлай	-	<u> </u>
	4.1 Критерии подобия	0	0	0
	4.2 Процессы конвективной термокинетики			
	4.3 Процессы конвективного массопереноса			
	4.4 Процессы газодинамики			
	4.5 Процессы естественной конвекцииведите здесь			
	подробное описание пункта			
	Лекция 5			
	5.1 Динамический, диффузионный и тепловой			
	пограничные слои в			
	процессах конвективного тепло- и массообмена			
	5.2 Режимы течения среды			
	5.3 Динамический пограничный слой при ламинарном			
	движении среды			
	5.4 Тепловой и диффузионный пограничный слои			
	при ламинарном течении среды			
6	ТЕМА 3 ТЕРМОДИНАМИКА ПРОЦЕССА	Всего	аудиторн	ых часов
O	КРИСТАЛЛИЗАЦИИ	2	<u> </u>	4
	Лекция 6	Онлай	-	
	6.1 Термодинамика процесса кристаллизации веществ	0	0	0
	из насыщенных растворов	0	U	U
	6.2 Гомогенное зародышеобразование из пересыщенного			
	пара и			
	пересыщенного раствора			
	6.3 Гетерогенное зародышеобразование			
	6.4 Формы роста и равновесная форма роста			
7	кристалледите здесь подробное описание пункта	Doors	OVIII	LIV HOCOR
7	тема 4 кинетика кристаллизации Лекция 7	Всего 2	аудиторн 0	ых часов

	7.2 Hyyrayyyag ayana atty ma atta ymyata yyan	0		0
	7.2 Линейная скорость роста кристаллов	0	0	0
	7.3 Метод «принудительной» кристаллизации			
	7.4 Постепенная кристаллизация нескольких веществ			
0 0	7.5 Объемная «суммарная» скорость кристаллизации	D		
8 - 9	ТЕМА 5 КРИСТАЛЛИЗАЦИЯ ИЗ РАСТВОРОВ		аудиторн	
	Лекция 8	2	0	4
	8.1 Классификация методов выращивания кристаллов из	Онла	1	T -
	растворов	0	0	0
	8.2 Рост кристаллов из низкотемпературных растворов			
	8.3 Гидротермальный рост кристаллов в условиях			
	температурного градиента			
	8.4 Аппаратурные оформления методов роста			
	монокристаллов из			
	растворов			
9-15	Второй раздел. Технология получения	14	0	14
	некристаллических материалов и керамики			
9 - 10	ТЕМА 1. ОСОБЕННОСТИ СТЕКЛООБРАЗНОГО	Всего	аудиторі	ных часов
	СОСТОЯНИЯ, ОПТИЧЕСКИЕ СТЕКЛА	4	0	4
	Лекция 1	Онла	йн	
	1 Особенности стеклообразного состояния и строение	0	0	0
	стекла.			
	Классы стекол			
	2 Физико-химические основы стекловарения			
	3 Стекловарение и его стадии			
	.4 Формирование стекла; отжиг и закалка стекла			
	Лекция 2			
	1 Лазерные и вакуумные стекла			
	2 Светочувствительные стекла: фотохромные и			
	полихромные стекла			
	3 Оптически- и магнитоактивные стекла			
	4 Стеклянные волоконные и пленочные оптические			
	элементы			
11	ТЕМА 2. ОСНОВЫ ТЕХНОЛОГИИ	Всего	аудиторн	ных часов
	КЕРАМИЧЕСКИХ МАТЕРИАЛОВ	2	0	2
	Лекция 3	Онла	йн	1
	1 Подготовка исходных материалов	0	0	0
	2 Составление шихты. Специализированные добавки к			
	компонентам			
	керамики			
	3 Формование заготовок керамических изделий			
	4 Спекание. Интенсификация процессов спекания			
12 - 13	ТЕМА З НАНОКОМПОЗИТЫ В ФОТОНИКЕ	Всего	аудиторі	ных часов
	Лекция 4 Фотонные кристаллы	4	0	4
	1. Понятие запрещенной зоны. Требования предъявляемых	Онла	-	1
	к фотонным	0	0	0
	кристаллам			
	2. Классификация фотонных кристаллов			
	3. Зонная структура 1-D фотонного кристалла			
	4 Дефекты в фотонных кристаллах			
	Лекция 5 Методы создания ФК. Применение фотонных			
	кристаллов			
	1. Создание фотонных наноструктур методом коллоидной			
	т. создание фотонных папоструктур методом коллоидной	1		

	сборки			
	2. Методы, использующие самопроизвольное			
	формирование фотонных кристаллов			
	3. Литографические методы			
	4. Голографические методы			
14 - 15	ТЕМА 4. МЕТАМАТЕРИАЛЫ И ПЛАЗМОНИКА	Всего а	удиторных	часов
	Лекция 6. Метаматериалы	4	0	4
	1. Свойства и строение метаматериалов. Методы	Онлайі	H	
	изготовления метаматериалов	0	0	0
	2. История создания			
	3. Отрицательный показатель преломления			
	4. Применение метаматериалов			
	Лекция 7 Плазмоника			
	1. Понятие плазмонов			
	2. Возбуждение плазмонных волн			
	3. Дифракция (уширение) плазмонов			
	4. Плазмонный лазер			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание		
	6 Семестр		
1 - 8	Лабораторная работа		
	Методы получения кристаллических материалов для фотоники		
9 - 16	Лабораторная работа		
	Получения некристаллических материалов и керамики		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализация программы используются следующие технологии:

- лекции по курсу традиционного типа, на некоторых лекциях применяется компьютерный проектор для иллюстраций сложных устройств, систем и процессов;
- самостоятельная работа: изучение теоретического материалы и подготовка к выполнению лабораторных работ;
 - посещение лабораторий НОЦ «Нанотехнологии» НИЯУ МИФИ.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(К П 1)
ПК-5.1	3-ПК-5.1	3, Кл-8
	У-ПК-5.1	3, Кл-8
	В-ПК-5.1	3, Кл-8
ПК-6	3-ПК-6	3, Кл-8
	У-ПК-6	3, Кл-8
	В-ПК-6	3, Кл-8
ПК-7	3-ПК-7	3, Кл-8, УО-15
	У-ПК-7	3, Кл-8, УО-15
	В-ПК-7	3, УО-15
ПК-8	3-ПК-8	3, УО-15
	У-ПК-8	3, УО-15
	В-ПК-8	3, УО-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69	3-	1	Оценка «удовлетворительно»
60-64	3— «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не

			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Курс включает в себя лекционные и лабораторные занятия. На лабораторных работах студенты выполняют лабораторные работы, входящие в программу курса. Поощряется активное участие в обсуждении материалов лекций, а также умение своевременно задавать вопросы для прояснения всех непонятных моментов по пройденному материалу. Помимо лекционных и лабораторных занятий курс включает в себя самостоятельную работу студентов. Данное время отводится для самостоятельной переработки и повторения материала, выполнения домашних заданий, устранения долгов, накопленных во время семестра, а также для самостоятельной подготовки к сдаче теоретического материала (зачет). Во время

самостоятельной подготовки к сдаче теоретического материала студенты учатся работать с научной литературой.

Итоговые баллы складываются из: 1) результатов контрольной и тестового опроса; 2) результатов контроля посещаемости; 3) результатов оценки работы студента в интерактивном режиме.

Получение положительной оценки по каждой проверочной работе (устный опрос и защита результатов, полученных в ходе выполнения лабораторных работ) является необходимым условием получения итоговой положительной оценки.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс логически разбит на несколько взаимосвязанных частей. В первом разделе (1-8 недели) рассматриваются основные понятия, подходы и технолгии получения применительно к кристаллическим материалам фотоники, в том числе рассматриваются фотонные кристаллы и графен. во втором (9-16 недели) — к некристаллическим материалам. Преподавателю обязательно следует указать все источники литературы, из которых берётся информация на лекциях. Важно, чтобы информация была донесена до студентов в чёткой и ясной форме.

При проведении лабораторных работ, преподавателю следует обращать внимание на самостоятельность и активность студентов. На все возникающие вопросы лучше всего давать ответы, ссылаясь на определённый источник, который студент может подробнее изучить дома самостоятельно. Каждая лабораторная работа должна логически завершаться отчетом студента с результатами, полученными в работе и ее защитой.

Следует обращать внимание на то, чтобы материал, прочитанный на лекциях, и сделанные лабораторные работы позволяли студенту в полном объеме справиться с зачетом.

Автор(ы):

Сигловая Наталия Владимировна