МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ ПОДГОТОВКА КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

УТВЕРЖДАЮ Первый проректор О.В. Нагорнов «30» января 2023 г.

Программа одобрена НТС ИНТЭЛ Протокол № 1 от 30.01.2023 Протокол № 03/3-21 от 30.08.2021 Протокол № 02-2020 от 31.08.2020

ХАРАКТЕРИСТАКА ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ.

КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ ВЫПУСКНИКА

ПРОГРАММА ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

Направление подготовки

11.06.01 Электроника, радиотехника и системы связи

Программа подготовки:

Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах

Научная специальность:

Научная специальность 2.2.2. Электронная компонентная база микро- и наноэлектроники, квантовых устройств

Квалификация (степень)

ИССЛЕДОВАТЕЛЬ. ПРЕПОДАВАТЕЛЬ-ИССЛЕДОВАТЕЛЬ

Срок обучения: 4 года

Форма обучения: очная

Москва, 2023

Содержание

1.	ОБЩИЕ ПОЛОЖЕНИЯ	3
2.	ЦЕЛИ И ЗАДАЧИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ АСПИРАНТУРЫ	6
3.	ОБЪЕМ ПРОГРАММЫ, ФОРМА И НОРМАТИВНЫЙ СРОК ОБУЧЕНИЯ	6
	ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ, ВОИВШИХ ПРОГРАММУ АСПИРАНТУРЫ	7
	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ. МПЕТЕНТНОСТНАЯ МОДЕЛЬ	12
6.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ АСПИРАНТУРЫ	15
7.O	РГАНИЗАЦИИ-РАБОТОДАТЕЛИ/ЗАКАЗЧИКИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	.16
	ЧЕБНЫЙ ПЛАН, КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК, РАБОЧИЕ ПРОГРАММЫ И ЭНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИН, ПРОГРАММЫ ПРАКТИК, ПРОГРАММА	И
	РНД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ	

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре.

Основная профессиональная образовательная программа высшего образования – программа подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации в 11.06.01 Электроника, радиотехника аспирантуре И системы связи, направленность «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах» (далее – образовательная программа НИЯУ МИФИ) представляет собой совокупность документов, содержащих общую характеристику, объем, содержание, планируемых результатов освоения, организационно-педагогических условий и форм аттестации. Образовательной программа реализуется в соответствии с приказом №1259 Минобрнауки и самостоятельно устанавливаемым образовательным стандартом, утвержденным Ученым советом НИЯУ МИФИ (Протокол № 14/04 от 18.03.2014 г.), с изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ OT 29.08.2014 г.), с изменениями и дополнениями, $N_{\underline{0}}$ 14/07 утвержденными Ученым советом НИЯУ МИФИ (Протокол № 15/04 от 02.06.2015 г.), изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 16/04 от 16.05.2016). Образовательный стандарт согласован с Объединенным советом обучающихся НИЯУ МИФИ (протокол № 10сп от 10 мая 2016г.), рекомендован Объединенным учебно-методическим советом НИЯУ МИФИ (протокол № 15 от 13 мая 2016 г.).

Образовательная программа НИЯУ МИФИ разработана на основании положений статей 2 п.7 и 11 п. 10 Федерального закона от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации», паспорта научной специальности, а также в соответствии с требованиями международных стандартов инженерного образования Всемирной инициативы СDIО и лучших практик

отечественных и зарубежных университетов, основными положениями Болонской декларации, требованиями профессионально-общественной, в том числе международной аккредитации образовательных программ (FEANI и др.), требованиями стандарта ГОСТ ISO 9001-2011, требованиями профессиональных отраслевых стандартов, требованиями работодателей.

1.2. Нормативная регламентация образовательной программы.

Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации в аспирантуре разработана с учетом:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (в действующей редакции);
- Федерального государственного образовательного стандарта по направлению подготовки кадров высшей квалификации в аспирантуре 11.06.01
 Электроника, радиотехника и системы связи от 30 июля 2014 г. № 876 (в действующей редакции);
- Образовательного стандарта НИЯУ МИФИ (ОС НИЯУ МИФИ) по направлению подготовки **11.06.01** Электроника, радиотехника и системы связи по уровню высшего образования подготовки кадров высшей квалификации, утвержденный Ученым советом университета Протокол №14/04 от 18.03.2014 (далее ОС НИЯУ МИФИ) (в действующей редакции);
- Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования–программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), утвержденного приказом Минобрнауки России от 19.11.2013 №1259 (в действующей редакции);
- Порядка приема на обучение по образовательным программам высшего образования –программам подготовки научно-педагогических кадров в

аспирантуре, утвержденного приказом Минобрнауки России от 26 марта 2014 года № 233 (в действующей редакции);

- Положения о практике обучающихся, осваивающих основные профессиональные образовательные программы высшего образования, утвержденного приказом Минобрнауки России от 27.11.2015 №1383;
- Порядка проведения государственной итоговой аттестации по образовательным программам высшего образования программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), программам ординатуры, программам ассистентуры-стажировки, утвержденного приказом Минобрнауки России от 18.03.2016 № 227;
- Положения о практической подготовке обучающихся, утвержденного приказом Министерства науки и высшего образования РФ и Министерства просвещения РФ от 5 августа 2020 г. № 885/390.
 - иными локальными актами НИЯУ МИФИ.

1.3. Перечень сокращений

ФГОС ВО – федеральный государственный образовательный стандарт высшего образования;

ОС НИЯУ МИФИ –образовательный стандарт НИЯУМИФИ.

з.е. – зачетная единица;

УК – универсальная компетенция;

УСК – универсальная собственная компетенция;

ОПК – общепрофессиональная компетенция;

ОСПК – общепрофессиональная собственная компетенция;

ПК – профессиональная компетенция;

ПСК – профессиональная собственная компетенция

2. ЦЕЛИ И ЗАДАЧИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ АСПИРАНТУРЫ

- 2.1. Целью образовательной программы аспирантуры является создание приобретения необходимого для аспирантам условий для осуществления профессиональной деятельности уровня знаний, умений, навыков, опыта научно-квалификационной деятельности И подготовки защите работы (диссертации) на соискание ученой степени кандидата наук.
- **2.2.** Основными задачами образовательной программы аспирантуры являются:
- формирование человека и гражданина, являющегося высокопрофессиональным членом общества, ориентированными на его развитие и совершенствование;
- удовлетворение образовательных потребностей и интересов обучающихся с учетом его способностей;
 - владение технологией научного познания;
- формирование профессиональной готовности к самостоятельной научно-исследовательской и педагогической деятельности;
- формирование умений и навыков использования информационных технологий в научно- исследовательской и педагогической деятельности;
 - совершенствование иностранного языка для профессиональной деятельности;
 - получение квалификации «Исследователь. Преподаватель-исследователь».

3. ОБЪЕМ ПРОГРАММЫ, ФОРМА И НОРМАТИВНЫЙ СРОК ОБУЧЕНИЯ

3.1. Объем программы аспирантуры составляет 240 зачетных единиц вне зависимости от формы обучения, применяемых образовательных технологий, реализации программы аспирантуры с использованием сетевой формы, реализации программы аспирантуры по индивидуальному учебному плану, в том числе при ускоренном обучении.

3.2. Форма обучения

Форма обучения - очная

- 3.3. Срок получения образования по программе аспирантуры:
- в очной форме обучения, включая каникулы, предоставляемые после прохождения государственной итоговой аттестации, вне зависимости от применяемых образовательных технологий, составляет 4 года.
- **3.4.** Перечень предприятий для прохождения практики и трудоустройства выпускников:
 - Федеральное государственное автономное научное учреждение Институт сверхвысокочастотной полупроводниковой электроники имени В.Г. Мокерова Российской академии наук
 - АО "НПП "Пульсар"
 - Физический институт имени им. П.Н. Лебедева РАН (ФИАН)
 - Институт общей физики им. А.М. Прохорова РАН (ИОФАН)
 - ФГБУ НИЦ "Курчатовский институт"
 - АО "НИИ "Полюс" им. М.Ф. Стельмаха"
 - АО "НПП "Исток" им. Шокина".

4. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ, ОСВОИВШИХ ПРОГРАММУ АСПИРАНТУРЫ

- **4.1.** Область профессиональной деятельности выпускников по программе аспирантуры «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах» включает:
 - теоретическое и экспериментальное исследование, математическое И проектирование, компьютерное моделирование, конструирование, использование и эксплуатацию материалов, компонентов, испытание, электронных приборов, устройств твердотельной, СВЧ, оптической, микро- и наноэлектроники радиофотоники функционального различного И назначения;

- исследования и разработки, направленные на создание и обеспечение функционирования устройств, систем и комплексов, основанных на использовании электромагнитных колебаний и волн и предназначенных для передачи, приема и обработки информации, получения информации об окружающей среде, природных и технических объектах;
- совокупность технологий, средств, способов и методов человеческой деятельности, направленных на создание условий для обмена информацией на расстоянии по проводной, радио, оптической системам, ее обработки и хранения.
- **4.2.** Объектами профессиональной деятельности выпускников по программе аспирантуры «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах» являются:
 - материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, моделирования, проектирования и конструирования, технологические процессы производства, математические модели, алгоритмы решения типовых задач, современное программное и информационное обеспечение процессов моделирования и проектирования изделий электроники и наноэлектроники, оптоэлектроники и радиофотоники;
 - радиотехнические системы, комплексы и устройства, методы и средства их проектирования, моделирования, экспериментальной отработки, подготовки к производству и применению, применения по назначению и технического обслуживанию;
 - технологии, средства, способы и методы человеческой деятельности, направленные на создание условий для обмена информацией на расстоянии, ее обработки и хранения, в том числе технологические системы и технические средства, обеспечивающие надежную и качественную передачу,

прием, обработку и хранение различных знаков, сигналов, письменного текста, изображений, звуков по проводным, радио и оптическим системам, технологии создания электронной компонентной базы;

- исследования и разработки в области материалов СВЧ, функциональной и оптоэлектроники, радиофотоники, транзисторов с высокой подвижностью электронов на основе гетероструктур, оптоэлектронных приборов.
- **4.3. Виды профессиональной деятельности**, к которым готовятся выпускники аспирантуры по программе аспирантуры «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах»:
 - научно-исследовательская и инновационная деятельность в области электроники, радиотехники и систем связи;
 - преподавательская деятельность в области электроники, радиотехники и систем связи.

Образовательная программа высшего образования — программа аспирантуры направлена на освоение всех видов профессиональной деятельности, к которым готовится выпускник, а также предполагает применение в учебном процессе дистанционных технологий и онлайн-образование.

- **4.4.** Задачи профессиональной деятельности выпускников по программе аспирантуры «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах»
 - 4.4.1. Научно-исследовательская и инновационная деятельность:
 - В предметной области деятельности исследования и разработки физико-технологических основ создания новых материалов, принципов и алгоритмов работы приборов и устройств, проектирования и конструирования, технологий изготовления компонентной базы, схемотехнического и топологического проектирования, моделирования, испытания при воздействии внешних факторов, надежность

электронных компонент, - для приборов твердотельной электроники, радиоэлектронных компонентов, изделий микро- и наноэлектроники, приборов на квантовых эффектах, включая оптоэлектронные приборы, СВЧ и радиофотонные приборы и преобразователи физических величин:

- разработка программ проведения научных исследований опытных,
 конструкторских и технических работ,
- разработка физических и математических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере деятельности;
- разработка методик и организация проведения экспериментов и испытаний, анализ их результатов;
- подготовка технических заданий для проведения исследовательских и научных работ;
- сбор, обработка, анализ и систематизация научно-технической информации по теме исследования, выбор и обоснование методик и средств решения поставленных задач;
- управление результатами научно-исследовательской деятельности, подготовка научно-технических отчетов, обзоров, публикаций по результатам выполненных исследований;
- участие в конференциях, симпозиумах, школах-семинарах и т.д.;
- защита объектов интеллектуальной собственности.

4.4.2. Преподавательская деятельность:

— Проведение педагогической деятельности ПО образовательным программам высшего образования В областях: твердотельная микроэлектроника, радиоэлектронные компоненты, И наноэлектроника, приборы на квантовых эффектах, физическая оборудование электроника, технология И производства ДЛЯ полупроводников, материалов и приборов электронной техники;

- проведение учебных занятий со студентами по тематике научного исследования;
- разработка учебно-методических материалов для работы со студентами
- применение современных информационно-коммуникационных технологий в учебном процессе;
- передача своих знания учащимся ВУЗов;
- овладение навыками самообразования и современными методиками преподавания специальных научных дисциплин.
- 4.5. Предметная специализация выпускников нацелена на решение следующего круга задач.
 - 4.5.1. Научно-исследовательская и инновационная деятельность:
- исследования и разработки новых гетероструктурных полупроводниковых материалов на основе A3B5, SiC, графена и алмаза;
- исследования и разработки в области современных нанотехнологий электроники для создания электронной компонентной базы, в т.ч. планарная технология формирования многослойной металлизации, плазмохимические технологии осаждения и травления диэлектрических покрытий, нанолитография, атомно-слоевое осаждение, кластерная планаризация, гетерогенная интеграция;
- исследования и разработки в области токопереноса и излучательных процессов в органических полупроводниковых структурах;
- проведение экспериментальных исследований в области перспективных приборов микро- и наноэлектроники, функциональной электроники, в т.ч. работающих на новых принципах спинтроники, одноэлектроники, функциональной электроники, радиофотоники, терагерцевой фотоники;
- разработка математических моделей функционирования и параметров электронных приборов, в т.ч. с учетом процессов рассеяния и баллистических процессов в короткоканальных нанотранзисторах;

- квантовый дизайн полупроводниковых гетероструктур и приборов СВЧ электроники нанотранзисторов, резонансно-туннельных диодов, терагерцевой компонентной базы и т.д.;
- разработка технологий эпитаксиального роста гетероструктур для СВЧ, силовой, функциональной и оптоэлектроники, радиофотоники, терагерцевой фотоники, сенсоров магнитного поля, температуры.
- исследования в области физики радиационного воздействия и воздействия тяжелых заряженных частиц на материалы и электронные приборы.
- моделирование и проектирование радиационно-стойкой электронной компонентной базы кремниевой, кремний-на-изоляторе и гетероструктурной электроники;
 - проектирование специализированных микроконтроллеров.
 - 4.5.2. педагогическая деятельность:
- проведение учебных занятий со студентами по тематике собственного научного исследования;
- разработка учебно-методических материалов для организации самостоятельной работы студентов и контроля усвоения ими учебного материала.

Подготовка аспирантов по данной программе формирует специалистов в области физической электроники, материалов и технологий нового поколения для исследований решения актуальных задач инженерии, И проектирования приборов устройств, радиоэлектронных И компонентной базы. сверхширокополосных систем, сенсоров и оптоэлектронных приборов, в т.ч. для специальных условий применения.

5. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ. КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ

В результате освоения образовательной программы «Твердотельная электроника, радиоэлектронные компоненты, микро- и нано-электроника, приборы на квантовых эффектах» в рамках направления подготовки 11.06.01

«Электроника, радиотехника и системы связи» должны быть сформированы следующие компетенции:

Шифр компетенции	Наименование компетенции
УК-1	способностью к критическому анализу и оценке
	современных научных достижений, генерированию новых
	идей при решении исследовательских и практических
	задач, в том числе в междисциплинарных областях
УК-2	способностью проектировать и осуществлять комплексные
	исследования, в том числе междисциплинарные, на основе
	целостного системного научного мировоззрения с
	использованием знаний в области истории и философии
	науки
УК-3	готовностью участвовать в работе российских и
	международных исследовательских коллективов по
	решению научных и научно-образовательных задач
УК-4	готовностью использовать современные методы и
	технологии научной коммуникации на государственном и
	иностранном языках
УК-5	способностью следовать этическим нормам в
	профессиональной деятельности
УК-6	Способностью планировать и решать задачи собственного
	профессионального и личностного развития
УСК-1	готовностью руководить коллективом в сфере своей
	профессиональной деятельности, толерантно воспринимая
	социальные, этнические, конфессиональные и культурные
	различия
ОПК-1	владением методологией теоретических и
	экспериментальных исследований в области
OTIL 2	профессиональной деятельности
ОПК-2	владением культурой научного исследования, в том числе
	с использованием современных информационно-
ОПК-3	коммуникационных технологий
OHK-5	способностью к разработке новых методов исследования и их применению в самостоятельной научно-
	их применению в самостоятельной научно- исследовательской деятельности в области
	профессиональной деятельности
ОПК-4	готовностью организовать работу исследовательского
OIIIC- 4	коллектива в области профессиональной деятельности
ОПК-5	готовностью к преподавательской деятельности по
	основным образовательным программам высшего
	образования
ОСПК-1	способностью использовать профессиональные
	информационные ресурсы, включая базы данных научного
	my opening peopless, since in ourse guillent in inter-

	цитирования Elibrary, Web of Science, Scopus, при
	планировании и оформлении результатов научных
	исследований
ОСПК-2	способностью использовать принципы физической
	электроники при проектировании и/или моделировании
	параметров наноматериалов и электронных приборов на их
	основе
ОСПК-3	способностью использовать принципы и подходы
	современных нанотехнологий, применяемых к
	перспективным изделиям микро- и наноэлектроники, а
	также методов измерений и контроля в современном
	производстве
ОСПК-4	способностью к самостоятельному исследованию и
	выполнению прикладных разработок в сфере новых
	наноматериалов, технологий, принципов создания
	перспективных приборов и устройств микро- и
	наноэлектроники, специальной электроники, радиационно-
	стойкой электроники
ПК-1	способностью применять экспериментальные,
	теоретические и компьютерные методы исследований в
	профессиональной области
ПК-2	способностью к созданию теоретических и математических
	моделей, описывающих физические явления в области
	современных нанотехнологий функционирование и
	параметры электронных приборов, в т.ч. с учетом
	процессов рассеяния и баллистических процессов в
	короткоканальных нанотранзисторах; в области
	токопереноса и излучательных процессов в органических
	полупроводниковых структурах
ПК-3	готовностью к моделированию и проектированию
	радиационно-стойкой электронной компонентной базы
	кремниевой, кремний-на-изоляторе и гетероструктурной
	электроники; специализированных микроконтроллеров
ПК-4	способностью к разработкам новых гетероструктурных
	полупроводниковых материалов на основе A3B5, SiC,
	графена и алмаза, разработкам технологий
	эпитаксиального роста гетероструктур для СВЧ, силовой,
	функциональной и оптоэлектроники, сенсоров магнитного
	поля, температуры
ПК-5	способностью разрабатывать учебно-методические
	материалы для организации самостоятельной работы
	студентов и контроля усвоения ими учебного материала
ПК-6	самостоятельно выполнять экспериментальные и
	теоретические исследования для развития методов

	измерений на основе новых детекторов излучений и их использования в современных экспериментах
ПСК-1	готовностью к проведению научно-технических разработок полного инновационного цикла, с учетом доведения уровня разработки до демонстрации требуемых функциональных параметров в области материалов, технологий, компонентной базы и устройств
ПСК-2	готовностью к выявлению и оформлению новых научнотехнических решений в виде результатов инновационной деятельности - патентов, ноу-хау, регистрации топологий микросхем

6. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ АСПИРАНТУРЫ

6.1. Материально-техническое обеспечение образовательного процесса НИЯУ МИФИ располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской деятельности обучающихся, предусмотренных учебным планом.

Материально-технические условия реализации ООП соответствуют требованиям ФГОС. Имеются помещения, предназначенные для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

6.2. Учебно-методическое обеспечение

Электронно-библиотечная система (ЭБС) НИЯУ МИФИ является частью Центра информационно-библиотечного обеспечения учебно-научной деятельности и обеспечивает одновременный доступ к более чем 1млн экземпляров.

В Центре создана система информационного обеспечения образовательной и научной среды университета, удовлетворяющая потребностям профессорскопреподавательского состава и студенчества. Обслуживание читателей ведется в автоматизированном режиме. Автоматизированы процессы поиска, заказа и

выдачи литературы читателям. Полная информация о фонде литературы отражена в электронных каталогах и представлена в локальном и удаленном доступе. Электронные каталоги научной библиотеки доступны на сайте <u>library.mephi.ru</u>.

Электронная информационно-образовательная среда НИЯУ МИФИ обеспечивает:

- доступ к учебным планам, рабочим программам дисциплин (модулей), практик и к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочих программах;
- фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения основной образовательной программы;
- проведение всех видов занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;
- формирование электронного портфолио обучающегося, в том числе сохранение работ обучающегося, рецензий и оценок на эти работы со стороны любых участников образовательного процесса.

Каждый аспирант в течение всего периода обучения обеспечивается индивидуальным неограниченным доступом к ЭБС и к электронной информационно-образовательной среде организации. Электронно-библиотечная система и электронная информационно-образовательная среда обеспечивают возможность доступа обучающимся и научно-педагогическим работникам из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети «Интернет», к материалам, необходимым для образовательной и научно-исследовательской деятельности.

7.ОРГАНИЗАЦИИ-РАБОТОДАТЕЛИ/ЗАКАЗЧИКИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень организаций-работодателей/заказчиков образовательной программы:

- Федеральное государственное автономное научное учреждение
 Институт сверхвысокочастотной полупроводниковой электроники имени В.Г. Мокерова Российской академии наук
- АО "НПП "Пульсар"
- Физический институт имени им. П.Н. Лебедева РАН (ФИАН)
- Институт общей физики им. А.М. Прохорова РАН (ИОФАН)
- ФГБУ НИЦ "Курчатовский институт"
- АО "НИИ "Полюс" им. М.Ф. Стельмаха"
- АО "НПП "Исток" им. Шокина".

8.УЧЕБНЫЙ ПЛАН, КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК, РАБОЧИЕ ПРОГРАММЫ И ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИН, ПРОГРАММЫ ПРАКТИК, ПРОГРАММА И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ.

Документы, указанные в п.8, являются неотъемлемой частью данной ООП и прилагаются в указанном порядке.

Составитель программы Н.И. Каргин

Представитель организации-работодателя/заказчика образовательной программы:

Зам. директора АО «НПП «Исток» им. Шокина» Буробин В.А.

Зам. директора ФГБУН ИСВЧПЭ РАН Пономарев Д.С.