Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИСТОЧНИКИ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Направление подготовки (специальность)

[1] 14.03.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	16	16	0		24-40	0-16	3
Итого	2	72	16	16	0	0	24-40	0-16	

АННОТАЦИЯ

Дисциплина посвящена изучению особенностей и основных характеристик источников ядерных ионизирующих излучений как инструментов исследования ядра атомов, а также

знакомству с современными наземными ускорительными экспериментами на пучках ЯИИ.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются:

- изучение особенностей и основных характеристик источников ионизирующих излучений как инструментов исследования ядра атомов;
 - знакомство с современными наземными ускорительными экспериментами на пучках.

Особенности использования различных пучков иллюстрируются примерами реальных экспериментов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Данная дисциплина логически и содержательно — методически является частью заключительной специализации, являющейся неотьемлемой частью знаний физика — экспериментатора в области экспериментальной ядерной физик и физики частиц.

«Входными» знаниями являются знания общей физики, ядерной физики, теоретической физики, электротехники, электроники.

Для освоения данной дисциплины необходимо предшествующее освоение разделов общей физики: электричества и магнетизма, атомной физики; освоение разделов ядерной физики, классической и квантовой механики и электродинамики, основ электротехники и электроники.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и
профессиональной	знания	профессиональной	наименование
деятельности (ЗПД)		компетенции;	индикатора
		Основание	достижения
		(профессиональный	профессиональной
		стандарт-ПС, анализ	компетенции

		опыта)	
	научно-исслед		
1 Изучение и анализ	1 Объектами	ПК-13.1 [1] -	3-ПК-13.1[1] - Знать
научно-технической	профессиональной	Способен к сбору,	цели и задачи
информации,	деятельности	обработке, анализу и	проводимых
отечественного и	выпускников по	обобщению	исследований и
зарубежного опыта по	основной	результатов	разработок, их
тематике	образовательной	экспериментов и	методы и средства
исследования;	программе	исследований в	планирования,
математическое	«Экспериментальные	соответствующей	методы проведения
моделирование	исследования и	области знаний;	экспериментов и
процессов и объектов	моделирование		наблюдений,
на базе стандартных	фундаментальных	Основание:	обощения;
пакетов	взаимодействий»	Профессиональный	У-ПК-13.1[1] -
автоматизированного	являются: атомное	стандарт: 40.011	Уметь оформлять
проектирования и	ядро, элементарные		результаты научно-
исследований;	частицы и плазма,		исследовательских и
проведение	газообразное и		опытно-
экспериментов по	конденсированное		конструкторских
заданной методике,	состояние вещества,		работ,применять
составление описания	лазеры и их		методы анализа
проводимых	применения,		научно- технической
исследований и анализ	ускорители		информации;
результатов;	заряженных частиц,		В-ПК-13.1[1] -
подготовка данных	современная		Владеть методами
для составления	электронная		сбора, обработки и
обзоров, отчетов и	схемотехника,		анализа научной
научных публикаций,	электронные системы		информации,
участие во внедрении	ядерных и физических		способами ее
результатов	установок, системы		обобщения
исследований и	автоматизированного		
разработок;	управления ядерно-		
	физическими		
	установками,		
	разработка ядерных и		
	физических		
	установок, технологии		
	применения приборов		
	и установок для		
	регистрации		
	излучений, разделения		
	изотопных и		
	молекулярных смесей,		
	а также анализа		
	веществ,		
	радиационное		
	воздействие		
	ионизирующих		
	излучений на человека		
	и окружающую среду,		
	радиационные		
	технологии в		

	математические модели для теоретических, экспериментальных и прикладных исследований явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, экологический мониторинг окружающей среды, обеспечение безопасности ядерных материалов, объектов и установок атомной промышленности и энергетики.		
1 Изучение и анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования; математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований; проведение экспериментов по заданной методике, составление описания проводимых исследований и анализ результатов; подготовка данных для составления обзоров, отчетов и	1 Объектами профессиональной деятельности выпускников по основной образовательной программе «Экспериментальные исследования и моделирование фундаментальных взаимодействий» являются: атомное ядро, элементарные частицы и плазма, газообразное и конденсированное состояние вещества, лазеры и их применения, ускорители заряженных частиц, современная электронная схемотехника,	ПК-3 [1] - Способен проводить физические эксперименты по заданной методике, составлять описания проводимых исследований, отчеты по анализу результатов и подготовке научных публикаций Основание: Профессиональный стандарт: 40.011	3-ПК-3[1] - знать основные физические законы и методы обработки данных; У-ПК-3[1] - уметь работать по заданной методике, составлять описания проводимых исследований и отчеты, подготавливать материалы для научных публикаций; В-ПК-3[1] - владеть навыками проведения физических экспериментов по заданной методике, основами компьютерных и информационных

научных публикаций, участие во внедрении результатов исследований и разработок;

электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка ядерных и физических установок, технологии применения приборов и установок для регистрации излучений, разделения изотопных и молекулярных смесей, а также анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, радиационные технологии в медицине, математические модели для теоретических, экспериментальных и прикладных исследований явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, экологический мониторинг окружающей среды, обеспечение безопасности ядерных материалов, объектов и установок атомной

промышленности и

энергетики.

технологий, научной терминологией проектный

3 Сбор и анализ информационных источников и исходных данных для проектирования приборов и установок; расчет и проектирование деталей и узлов приборов и установок в соответствии с техническим заданием с использованием средств автоматизации проектирования; разработка проектной и рабочей технической документации, оформление законченных проектноконструкторских работ; контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам; проведение предварительного техникоэкономического

3 Объектами профессиональной деятельности выпускников по основной образовательной программе «Экспериментальные исследования и моделирование фундаментальных взаимодействий» являются: атомное ядро, элементарные частицы и плазма, газообразное и конденсированное состояние вещества, лазеры и их применения, ускорители заряженных частиц, современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка ядерных и физических установок, технологии применения приборов и установок для регистрации излучений, разделения изотопных и молекулярных смесей, а также анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, радиационные

технологии в медицине,

ПК-4 [1] - Способен к расчету и проектированию элементов систем в соответствии с техническим заданием, требованиями безопасности и принципами CDIO

Основание: Профессиональный стандарт: 40.011

3-ПК-4[1] - знать типовые методики планирования и проектирования систем; У-ПК-4[1] - уметь использовать стандартные средства автоматизации проектирования;; В-ПК-4[1] - владеть методами расчета и проектирования деталей и узлов приборов и установок в соответствии с техническим заданием, требованиями безопасности и принципами CDIO

математические модели для теоретических, экспериментальных и прикладных исследований явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, экологический мониторинг окружающей среды, обеспечение безопасности ядерных материалов, объектов и установок атомной промышленности и энергетики.

производственно-технологический

4 Организация защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия; организация рабочих мест, их техническое оснащение, размещение технологического оборудования; контроль за соблюдением технологической дисциплины и обслуживание технологического оборудования; метрологическое обеспечение технологических

4 Объектами профессиональной деятельности выпускников по основной образовательной программе «Экспериментальные исследования и моделирование фундаментальных взаимодействий» являются: атомное ядро, элементарные частицы и плазма, газообразное и конденсированное состояние вещества, лазеры и их применения, ускорители заряженных частиц, современная электронная

схемотехника,

ПК-8 [1] - Способен к оценке ядерной и радиационной безопасности и контролю за соблюдением экологической безопасности

Основание: Профессиональный стандарт: 40.011

3-ПК-8[1] - Знать методы оценки ядерной и радиационной безопасности, контроля за соблюдением экологической безопасности; У-ПК-8[1] - Уметь оценивать ядерную и радиационную безопасность, проводить контроль за соблюдением экологической безопасности; В-ПК-8[1] - Владеть навыками оценки ядерной, радиационной и экологической безопасности

процессов, использование типовых методов контроля качества выпускаемой продукции; участие в работах по доводке и освоению технологических процессов в ходе подготовки производства новых установок, приборов и систем; наладка, настройка, регулировка и опытная проверка оборудования и программных средств; монтаж, наладка, испытания и сдача работ в необходимые сроки заказчику

электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка ядерных и физических установок, технологии применения приборов и установок для регистрации излучений, разделения изотопных и молекулярных смесей, а также анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, радиационные технологии в медицине, математические модели для теоретических, экспериментальных и прикладных исследований явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, экологический мониторинг окружающей среды, обеспечение безопасности ядерных материалов, объектов и установок атомной промышленности и энергетики.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин
воспитания	C	1 17
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала блока профессиональных
	формирование культуры	дисциплин для формирования чувства
	ядерной безопасности	личной ответственности за соблюдение
	(B24)	ядерной и радиационной безопасности,
		а также соблюдение государственных и
		коммерческих тайн. 2.Использование
		воспитательного потенциала
		содержания учебных дисциплин
		«Актуальные проблемы эксплуатации
		АЭС», «Основы экологической
		безопасности в ядерной энергетике»,
		«Системы радиационного контроля»
		для формирование личной
		ответственности за соблюдение
		экологической и радиационной
		безопасности посредством изучения
		основополагающих документов по
		культуре ядерной безопасности,
		разработанных МАГАТЭ и
		российскими регулирующими
		органами, норм и правил обращения с
		радиоактивными отходами и ядерными
		материалами. 3.Использование
		воспитательного потенциала учебных
		дисциплин «Контроль и диагностика
		ядерных энергетических установок»,
		«Надежность оборудования атомных
		реакторов и управление риском»,
		«Безопасность ядерного топливного
		цикла», «Ядерные технологии и
		экология топливного цикла» для
		формирования личной ответственности
		за соблюдение и обеспечение
		кибербезопасности и информационной
		безопасности объектов атомной отрасли
		через изучение вопросов организации
		информационной безопасности на
		объектах атомной отрасли, основных
		принципов построения системы АСУТП
		ядерных объектов, методов защиты и
		хранения информации, принципов
		построения глубокоэшелонированной и
		гибкой системы безопасности ядерно-
		физических объектов.
		4.Использование воспитательного
		потенциала содержания блока
		дисциплин «Экология», «Системы

эко без ост ку. раз ро- орг раз ма во- ди яде «Н рез «Б	Использование воспитательного тенциала блока профессиональных сциплин для формирования чувства чной ответственности за соблюдение ерной и радиационной безопасности, акже соблюдение государственных и ммерческих тайн. 2.Использование спитательного потенциала держания учебных дисциплин ктуальные проблемы эксплуатации ОС», «Основы экологической вопасности в ядерной энергетике», истемы радиационного контроля» и формирование личной ветственности за соблюдение гологической и радиационной вопасности посредством изучения новополагающих документов по пьтуре ядерной безопасности, вработанных МАГАТЭ и ссийскими регулирующими ганами, норм и правил обращения с пиоактивными отходами и ядерными териалами. 3.Использование спитательного потенциала учебных сциплин «Контроль и диагностика ерных энергетических установок», адежность оборудования атомных акторов и управление риском», езопасность ядерного топливного кла», «Ядерные технологии и гология топливного цикла» для рмирования личной ответственности соблюдение и обеспечение
ки бе:	бербезопасности и информационной вопасности объектов атомной отрасли рез изучение вопросов организации

		информационной безопасности на объектах атомной отрасли, основных принципов построения системы АСУТП ядерных объектов, методов защиты и хранения информации, принципов построения глубокоэшелонированной и гибкой системы безопасности ядернофизических объектов. 4.Использование воспитательного потенциала содержания блока дисциплин «Экология», «Системы радиационного контроля», «Основы экологической безопасности в ядерной энергетике» для формирования ответственной экологической позиции посредством изучения вопросов обеспечения такого уровня безопасности АЭС, при котором воздействие на окружающую среду, обеспечивает сохранение природных систем, поддержание их целостности и жизнеобеспечивающих функций, через рассмотрение вопросов радиационного контроля при захоронении и переработки ядерных отходов, вопросов замыкания ядерного топливного цикла.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование ответственной экологической позиции (B26)	1.Использование воспитательного потенциала блока профессиональных дисциплин для формирования чувства личной ответственности за соблюдение ядерной и радиационной безопасности, а также соблюдение государственных и коммерческих тайн. 2.Использование
		воспитательного потенциала содержания учебных дисциплин «Актуальные проблемы эксплуатации АЭС», «Основы экологической безопасности в ядерной энергетике», «Системы радиационного контроля» для формирование личной
		ответственности за соблюдение экологической и радиационной безопасности посредством изучения основополагающих документов по культуре ядерной безопасности, разработанных МАГАТЭ и российскими регулирующими
		органами, норм и правил обращения с радиоактивными отходами и ядерными материалами. 3.Использование воспитательного потенциала учебных дисциплин «Контроль и диагностика

ядерных энергетических установок», «Надежность оборудования атомных реакторов и управление риском», «Безопасность ядерного топливного цикла», «Ядерные технологии и экология топливного цикла» для формирования личной ответственности за соблюдение и обеспечение кибербезопасности и информационной безопасности объектов атомной отрасли через изучение вопросов организации информационной безопасности на объектах атомной отрасли, основных принципов построения системы АСУТП ядерных объектов, методов защиты и хранения информации, принципов построения глубокоэшелонированной и гибкой системы безопасности ядернофизических объектов. 4. Использование воспитательного потенциала содержания блока дисциплин «Экология», «Системы радиационного контроля», «Основы экологической безопасности в ядерной энергетике» для формирования ответственной экологической позиции посредством изучения вопросов обеспечения такого уровня безопасности АЭС, при котором воздействие на окружающую среду, обеспечивает сохранение природных систем, поддержание их целостности и жизнеобеспечивающих функций, через рассмотрение вопросов радиационного контроля при захоронении и переработки ядерных отходов, вопросов замыкания ядерного топливного цикла.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	ИП	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
		Недели	Лекц (семи Лабо работ	Обязат контро, неделя)	Макс	Аттеста раздела неделя)	Индикат освоения компетен
	7 Семестр						
1	Часть 1	1-8	8/8/0		25	КИ-8	3-ПК-3, У-ПК-3, В-ПК-3, 3-ПК-4, У-ПК-4, В-ПК-4
2	Часть 2	9-16	8/8/0		25	КИ-16	3-ПК-8, У-ПК-8, В-ПК-8, 3-ПК-13.1, У-ПК-13.1, В-ПК-13.1
	Итого за 7 Семестр		16/16/0		50		
	Контрольные мероприятия за 7 Семестр				50	3	3-ПК-3, У-ПК-3, B-ПК-3, 3-ПК-4, У-ПК-4, B-ПК-4, 3-ПК-8, У-ПК-8, B-ПК-8, 3-ПК-13.1, У-ПК-13.1,

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	7 Семестр	16	16	0
1-8	Часть 1	8	8	0

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

1 - 2	Тема1 Введение	Всего	аулитор	ных часов
1 - 2	Введение - место курса в профессиональной подготовке	1	1	0
	инженера-физика. Постановка основных физических и	Онлай	1 	U
	прикладных задач, обсуждаемых в курсе. Источники	Онлаг	0	0
	ионизирующих излучений как инструмент и объект	0	U	U
	исследования. Общая характеристика источников			
	заряженных частиц, гамма-квантов, нейтронов.			
2 - 3		Распо	OVITUE OF	W W WOOD
2 - 3	Тема2 Современные тенденции Современные тенденции развития физики тяжелых ионов	1	таудиторі П	ных часов
	и требования к источникам тяжелых ионов.	Онлай	1 1	0
	Ускорительные комплексы тяжелых ионов ОИЯИ, GSI	Онлаг	0	0
	(ФРГ), GANIL (Франция). Характеристики пучков и	0	U	U
	особенности их использования, перспективы развития и			
	совершенствования, типичные эксперименты на примере			
	4пи-спектрометра "Фобос".			
4 - 5	Тема3 Источники гамма-квантов	Всего	оущитор	ных часов
4 - 3	Интенсивные источники гамма-излучения - спектральные	2	<u>аудитор</u> 2	0
	и пространственно-временные характеристики излучения.	Онлай		10
	Особенности постановки экспериментов на примере	Онлаг	1	
	исследований фотоделения. Прикладные исследования с	0	0	0
	использовании фотоделения. Прикладные исследования с использованием синхротронного излучения.			
5 - 7	Тема4 Классификация НИ	Расто	OVILLITOR	HIIV HOOD
3 - 7	Классификация пи Классификация нейтронных источников.	2	2.	ных часов
		_		0
	Исследовательские ядерные реакторы на медленных и	Онлай		
	быстрых нейтронах, импульсные реакторы. Вывод и	0	0	0
	формирование нейтронных пучков. Фильтры, селекторы,			
	монохроматоры. Организация опытов на пучках тепловых			
7 - 8	нейтронов на примере	Распа	01177777040	/// /// // // // // // // // // // // /
7 - 0	Тема5 Источники нейтронов	2	2	ных часов
	Источники нейтронов на основе ускорителей заряженных частиц. Плазменные и портативные источники	2 Онлай		0
	нейтронов. 9 неделя Особенности экспериментов на			
	пучках быстрых нейтронов, и заряженных частиц -	0	0	0
9-16	исследования Часть 2	8	8	0
9 -10 9 - 10		<u> </u>		
9 - 10	Тема 6 Особенности экспериментов Особенности экспериментов на пучках быстрых	1 BCETO	аудиторі	ных часов
	• • • • • • • • • • • • • • • • • • • •	1	<u> </u>	10
	нейтронов, и заряженных частиц - исследования формы	Онлай		
10 11	барьера деления тяжелых ядер.	0	0	0
10 - 11	Тема7 Типы АЭС	Всего	аудитор	ных часов
	Типы энергетических ядерных реакторов на АЭС.	1	1	0
	Делящиеся материалы. Нейтронный цикл в тепловом	Онлай	ЙH	1.
	реакторе. Коэффициент размножения и формула 4-х	0	0	0
11 10	сомножителей, гомогенный и гетерогенный реактор.			
11 - 12	Тема8 Физпроцессы в ЯР	Всего	аудитор	ных часов
	Физические процессы в ядерных реакторах. Критичность.	1	1	0
	Реактивность. Выгорание топлива. Воспроизводство	Онлай		
	вторичного топлива. Пространственно-временное	0	0	0
	энергетическое распределение нейтронов в активной зоне.			
	Основные нейтронные реакции: (n,), (n, f), (n, 2n).			
12 - 14	Тема9 Топливо ЯР			ных часов
	Алгоритмы накопления актинидов и продуктов деления в	2	2	0

	топливе сложного состава. Степень изученности схем	Онлайн			
	распада ядер - продуктов деления. Энергия распада и	0	0	0	
	генетические связи нуклидов в цепочках радиоактивных				
	превращений.				
14 - 15	Тема10 Библиотеки ядерных данных	Всего аудиторных часов			
	Библиотеки ядерных данных по продуктам деления.	1	1	0	
	Основные интегральные радиационные характеристики	Онлайн			
	смеси продуктов деления. Ядерный реактор как	0	0	0	
	источник антинейтрино.				
15 - 16	Тема11 Характеристика источников фона	Всего а	удиторных	часов	
	Характеристика источников фонового излучения,	2	2	0	
	обусловленного активацией в реакторных, ускорительных	Онлайн	I		
	и космических экспериментах. Основы каскадной модели	0	0	0	
	ядерных реакций.				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе освоения курса помимо собственно лекций используются:

- оперативное решение студентами качественных задач по ходу лекции с последующим обсуждением;
 - собеседование по итогам написания промежуточной письменной контрольной работы.

Предусматривается поездка в ОИЯИ (г. Дубна) с целью ознакомления с введением в действия ускорительного проекта «НИКА».

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-13.1	3-ПК-13.1	3, КИ-16

	У-ПК-13.1	3, КИ-16
	В-ПК-13.1	3, КИ-16
ПК-3	3-ПК-3	3, КИ-8
	У-ПК-3	3, КИ-8
	В-ПК-3	3, КИ-8
ПК-4	3-ПК-4	3, КИ-8
	У-ПК-4	3, КИ-8
	В-ПК-4	3, КИ-8
ПК-8	3-ПК-8	3, КИ-16
	У-ПК-8	3, КИ-16
	В-ПК-8	3, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
		A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
	5 — «отлично»		программный материал, исчерпывающе,
90-100			последовательно, четко и логически
90-100			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	1	С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»		по существу излагает его, не допуская
70-74	-	D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	E	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 42 Атомная и ядерная физика: радиоактивность и ионизирующие излучения : учебник для спо, Бекман И. Н., Москва: Юрайт, 2022
- 2. 539.1 X19 Избранные вопросы теории ядра Ч.2 Аналитическая структура амплитуд рассеяния, Хангулян В.А., Москва: НИЯУ МИФИ, 2011
- 3. 005 И98 Презентация как средство представления проекта : , Ищенко Н.И., Рехина Г.Г., Москва: НИЯУ МИФИ, 2013
- 4. ЭИ С 86 Физика атомного ядра и элементарных частиц: основы кинематики : учебное пособие для вузов, Строковский Е. А., Москва: Юрайт, 2022
- 5. ЭИ 3-13 Физика пучков заряженных частиц и ускорительная техника: высокочастотные дефлекторы: учебное пособие для вузов, Завадцев А. А., Москва: Юрайт, 2021
- 6. ЭИ Э 41 Экспериментальная ядерная физика Т. 1 Физика атомного ядра, , : , 2022

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ E56 English-russian dictionary for nuclear english: англо-русский словарь с дефинициями к учебнику Сержа Горлина "Nuclear english", , Москва: НИЯУ МИФИ, 2013
- 2. 8(Англ) E56 English-russian dictionary for nuclear english: англо-русский словарь с дефинициями к учебнику Сержа Горлина "Nuclear english", , Москва: НИЯУ МИФИ, 2013
- 3. И H43 Heavy ion physics : International School-Seminar, VI. Dubna, 22-27 sept. 1997, , Singapore and oth.: World scientific, 1998
- 4. 662 П77 Взрывы и волны. Взрывные источники электромагнитного излучения радиочастотного диапазона: учебное пособие для вузов, Прищепенко А.Б., Москва: Бином. Лаборатория знаний, 2011

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Тема 1. Введение

Имея в виду, что источник излучения является неотъемлемой составляющей ядернофизического эксперимента, постараться составить впечатление о диапазоне возможностей, предоставляемом для исследований современными источниками. Следует обратить внимание на не тривиальность согласования пары источник - экспериментальная установка при планировании конкретного эксперимента.

Тема 2. Ускорители заряженных частиц

Разные типы ускорителей излагаются в единой информационной сетке: физические основы функционирования, техническое устройство, типичные и ожидаемые параметры, характерные задачи, решаемые на соответствующем пучке. Четкое структурирование материала должно сохраниться и у слушателя.

Тема 3. Ускорители заряженных частиц как импульсные источники нейтронов.

В этой теме основное внимание следует уделить физическим и техническим аспектам конверсии энергии пучка заряженных частиц в нейтроны.

Тема 4. Ядерные реакторы как источники нейтронов

Базой для успешного овладения темой является четкое понимание основных положений физики реакторов на медленных и быстрых нейтронах. Поскольку рассматриваются только исследовательские реакторы, особое внимание следует уделить вопросам вывода и формирования нейтронных пучков.

Тема 5. Источники гамма и рентгеновского излучения

Обратить внимание на многочисленные применения синхротронного излучения (СИ) в нанотехнологиях и уяснить причины такой востребованности. В качестве популярных областей использования рентгеновского излучения рассматриваются: элементный анализ, тонкие химические исследования, рентгеноструктурный анализ – в каждом из этих применений важно понимать его физическую основу.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Преподаватель должен сконцентрировать свои усилия на обеспечении самостоятельной работы студентов.

Предполагается следующая структура лекционно-практических занятий: чтение блока теоретического материала с последующей проработкой в ходе самостоятельной работы.

Опыт, накопленный в ходе преподавания данной дисциплины, показывает, что необходимо мотивировать студента на самостоятельную работу. Постановка нетривиальной задачи является наилучшим стимулом.

Хорошо зарекомендовали себя такие формы работы как диалог со студентом, групповая дискуссия. Активным студентам предлагается сделать небольшие сообщения по каким-либо частным аспектам изученных материалов.

Автор(ы):

Пятков Юрий Васильевич, д.ф.-м.н., профессор

Рецензент(ы):

Борог В.В, проф.каф.7