Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИЧЕСКИЕ ОСНОВЫ МИКРО- И НАНОТЕХНОЛОГИЙ (ЧАСТЬ 1)

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	24	24	0		24	0	Э
Итого	3	108	24	24	0	0	24	0	

АННОТАЦИЯ

Учебной задачей данного курса является освоение знаний про основные понятия о наноструктурах, их систематизации, общих физических методах получения наноструктур, основных физических свойствах и применениях наноструктур.

Курс состоит из следующих основных частей: квантование энергетических уровней в одномерных потенциальных ямах, эффект размерного квантования, современные методы получения наноструктур, методы диагностики и характеризации наноструктур, применение наноструктур.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является получение знаний, необходимых для успешной профессиональной деятельности в области исследований, разработок и технологий, направленных на понимание процессов, происходящих области нанофотоники, физики нанообъектов и конденсированного состояния вещества и управление процессами на наноуровне.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Профессиональный блок, дисциплина по выбору

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Кол и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	производственн	ю-технологический	
Выполнение работ по	Материалы,	ПК-10 [1] - Способен к	3-ПК-10[1] - Знание
технологической	компоненты,	модернизации	физических основ
подготовке	электронные	существующих и	современных микро- и
производства	приборы,	внедрению новых	нанотехнологий,
материалов и изделий	устройства,	методов и	технологий
электронной техники	установки, методы	оборудования для	гетероструктурной и
	их исследования,	измерений параметров	СВЧ-электроники.;
	проектирования и	наноматериалов и	У-ПК-10[1] - Умение

конструирования.	наноструктур	творчески применять
Технологические		современное
процессы	Основание:	оборудование для
производства,	Профессиональный	измерений параметров
диагностическое и	стандарт: 40.003	наноматериалов и
технологическое		наноструктур;
оборудование,		В-ПК-10[1] -
математические		Владение методами
модели, алгоритмы		измерений параметров
решения типовых		наноматериалов и
задач в области		наноструктур
электроники и		
наноэлектроники.		
Современное		
программное и		
информационное		
обеспечение		
процессов		
моделирования и		
проектирования		
изделий		
электроники и		
наноэлектроники.		
Инновационные		
технические		
решения в сфере		
базовых постулатов		
проектирования,		
технологии		
изготовления и		
применения		
электронных		
приборов и		
устройств.		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	ответственности за	дисциплин профессионального
	профессиональный выбор,	модуля для формирования у
	профессиональное развитие и	студентов ответственности за
	профессиональные решения (В18)	свое профессиональное
		развитие посредством выбора
		студентами индивидуальных
		образовательных траекторий,
		организации системы общения
		между всеми участниками
		образовательного процесса, в
		том числе с использованием

		новых информационных технологий.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
воспитанис	научного мировоззрения, культуры	дисциплин/практик «Научно-
	поиска нестандартных научно-	исследовательская работа»,
	технических/практических решений,	«Проектная практика»,
	критического отношения к	«Научный семинар» для:
	исследованиям лженаучного толка	- формирования понимания
	(B19)	основных принципов и
	(B17)	способов научного познания
		мира, развития
		исследовательских качеств
		студентов посредством их
		вовлечения в
		исследовательские проекты по
		областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и
		регулярных бесед;
		- формирования критического
		мышления, умения
		рассматривать различные
		исследования с экспертной
		позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных
П = 1	C	открытий и теорий.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование навыков коммуникации, командной	воспитательного потенциала дисциплин профессионального
	работы и лидерства (В20)	модуля для развития навыков
	расоты и лидеретва (В20)	коммуникации, командной
		работы и лидерства,
		творческого инженерного
		мышления, стремления
		следовать в профессиональной
		деятельности нормам
		делтельности пормам

поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы.

Профессиональное воспитание

Создание условий, обеспечивающих, формирование творческого инженерного/профессионального мышления, навыков организации коллективной проектной деятельности (В22)

1.Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование

воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы. Профессиональное Создание условий, 1.Использование обеспечивающих, формирование воспитание воспитательного потенциала коммуникативных навыков в профильных дисциплин области разработки и производства «Введение в специальность», полупроводниковых изделий (ВЗ6) «Введение в технику физического эксперимента», «Измерения в микро- и наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебноисследовательская работа» для: - формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в

этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов

в наноэлектронных
компонентах через
организацию практикумов в
организациях по разработке и
производству
полупроводниковых изделий,
использование методов
коллективных форм
познавательной деятельности,
ролевых заданий, командного
выполнения учебных заданий и
защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной		.•	ıй иа*,) 5 *	*_	
11.11	дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Основные понятия физики твер-дого тела. Теория	1-8	12/12/0		25	КИ-8	3-ПК-10, У-ПК-10, В-ПК-10
	энергетического спектра						
	полупроводниковых						
	наногетероструктур						
2	Основы технологии создания полупроводниковых наногетроструктур. Применение наногетроструктур в области микро- и оптоэлектроники	9-15	12/12/0		25	КИ-16	3-ПК-10, У-ПК-10, В-ПК-10
	Итого за 7 Семестр		24/24/0		50		
	Контрольные мероприятия за 7 Семестр				50	Э	3-ПК-10, У-ПК-10, В-ПК-10

^{* –} сокращенное наименование формы контроля

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	7 Семестр	24	24	0
1-8	Основные понятия физики твер-дого тела. Теория	12	12	0
	энергетического спектра полупроводниковых			
	наногетероструктур			
1	Тема 1	Всего а	аудиторных	часов
	Длина волны Де Бройля. Эффект размерного квантовая,	2	2	0
	классификация наноструктур. Основные понятия физики	Онлай	H	
	твердого тела. Кристаллическая структура, элементарная	0	0	0
	ячейка, понятие об обратной решетке.			
2	Тема 2	Всего а	аудиторных	часов
	Основные понятия физики твердого тела. Уравнение	2	2	0
	Шредингера в одноэлектронном приближении. Теорема	Онлайі	H	
	Блоха. Энергетические зоны в кристалле и классификация	0	0	0
	веществ по типу проводимости (металл, полупроводник,			
	диэлектрик). Модель сильной связи.			
3	Тема 3		аудиторных	часов
	Основные понятия физики твердого тела. Понятие дырки.	2	2	0
	Эффективная масса. Физический смысл эффективной	Онлай	Н	
	массы. Уравнение движения электрона во внешнем	0	0	0
	электрическом поле.			
4	Тема 4	Всего а	аудиторных	часов
	Основные понятия физики твердого тела. Заполнение	2	2	0
	энергетических зон. Функция распределения и плотность	Онлай	H	
	состояний и функции распределения в 3D случае. Уровень	0	0	0
	ферми в металле и полупроводнике. Собственные и			
	примесные полупроводники.			
5	Тема 5	Всего а	аудиторных	часов
	Гетеропереход. Понятие гетероперехода, типы	1	1	0
	гетеропереходов. Условия сшивки волновой функции на	Онлай	H	
	гетерогранице. Уравнение для огибающей волновой	0	0	0
	функции.			
6	Тема 6	Всего а	аудиторных	1
	Искажение зонной структуры вблизи гетерограниц.	1	1	0
	Область объемного заряда, ее масштаб. Энергетический	Онлайі	H	
	спектр электронов прямоугольной потенциальной яме	0	0	0
	различной размерности.			
7	Тема 7	Всего а	аудиторных	часов
	Энергетический спектр в цилиндрической и сферической	1	1	0
	потенциальных ямах. Экситоны в наноструктурах.	Онлай	H	
		0	0	0

8	Тема 8	Всего	Всего аудиторных часов			
	Плотность состояний в системах пониженной размерности	1	1	0		
	(2D, 1D, 0D случаи).		Онлайн			
		0	0	0		
9-15	Основы технологии создания полупроводниковых	12	12	0		
	наногетроструктур. Применение наногетроструктур в					
	области микро- и оптоэлектроники					
9	Тема 9	Всего	аудитор	ных часов		
	Сверхрешетки. Особенности энергетического спектра.	2	2	0		
	Метод сильной связи. Задача Кронига-Пенни.	Онлай	íн			
		0	0	0		
10	Тема 10	Всего	аудитор	ных часов		
	Некоторые методы исследования наноструктур.	2	2	0		
	Электронная и атомно-силовая микроскопия.	Онлай	íн			
		0	0	0		
11	Тема 11	Всего	аудитор	ных часов		
	Основы технологии создания наноструктур.	2	2	0		
	Молекулярно-лучевая эпитсаксия, газофазная эпитаксия,	Онлай	ÍН			
	литография.	0	0	0		
12	Тема 12		аудитор	ных часов		
	Поглощение и испускание света полупроводниками.	2	2	0		
	Прямозонные и непрямозонные полупроводники.	Онлай	ÍН			
		0	0	0		
13	Тема 13	Всего	аудитор	ных часов		
	Использование гетероструктур в технологии	1	1	0		
	полупроводниковых лазеров.	Онлай	íн			
		0	0	0		
14	Тема 14	Всего	аудитор	ных часов		
	Применение полупроводниковых наноструктур	1	1	0		
	микроэлектронике. Использование гетероструктур в	Онлай	íн			
	технологии фотодетекторов. Фотодетекторы ИК диапазона	0	0	0		
	на множественных квантовых ямах.					
15	Тема 15	Всего	аудитор	ных часов		
	Применение полупроводниковых наноструктур	1	1	0		
	микроэлектронике. Резонансное туннелированные.	Онлай	íн			
		0	0	0		
16	Тема 16	Всего	аудитор	ных часов		
	Применение полупроводниковых наноструктур	1	1	0		
	микроэлектронике. Полевые транзисторы. Транзистор с	Онлай	íн			
	плавающим затвором.	0	0	0		

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты

ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	7 Семестр
	Тема 1
	Длина волны Де Бройля. Эффект размерного квантовая, классификация наноструктур.
	Основные понятия физики твердого тела. Кристаллическая структура, элементарная
	ячейка, понятие об обратной решетке.
	Тема 2
	Основные понятия физики твердого тела. Уравнение Шредингера в одноэлектронном
	приближении. Теорема Блоха. Энергетические зоны в кристалле и классификация
	веществ по типу проводимости (металл, полупроводник, диэлектрик). Модель
	сильной связи.
	Тема 3
	Основные понятия физики твердого тела. Понятие дырки. Эффективная масса.
	Физический смысл эффективной массы. Уравнение движения электрона во внешнем
	электрическом поле.
	Тема 4
	Основные понятия физики твердого тела. Заполнение энергетических зон. Функция
	распределения и плотность состояний и функции распределения в 3D случае. Уровень
	ферми в металле и полупроводнике. Собственные и примесные полупроводники.
	Тема 5
	Гетеропереход. Понятие гетероперехода, типы гетеропереходов. Условия сшивки
	волновой функции на гетерогранице. Уравнение для огибающей волновой функции.
	Тема 6
	Искажение зонной структуры вблизи гетерограниц. Область объемного заряда, ее
	масштаб. Энергетический спектр электронов прямоугольной потенциальной яме
	различной размерности.
	Тема 7
	Энергетический спектр в цилиндрической и сферической потенциальных ямах.
	Экситоны в наноструктурах.
	Тема 8
	Плотность состояний в системах пониженной размерности (2D, 1D, 0D случаи).
	Тема 9
	Сверхрешетки. Особенности энергетического спектра. Метод сильной связи. Задача
	Кронига-Пенни.
	Тема 10
	Некоторые методы исследования наноструктур. Электронная и атомно-силовая
	микроскопия.
	Тема 11
	Основы технологии создания наноструктур. Молекулярно-лучевая эпитсаксия,
	газофазная эпитаксия, литография.
	Тема 12
	Поглощение и испускание света полупроводниками. Прямозонные и непрямозонные
	полупроводники.
	Тема 13
	Использование гетероструктур в технологии полупроводниковых лазеров.
	Тема 14
	Применение полупроводниковых наноструктур микроэлектронике. Использование

	гетероструктур в технологии фотодетекторов. Фотодетекторы ИК диапазона на			
множественных квантовых ямах.				
	Тема 15			
	Применение полупроводниковых наноструктур микроэлектронике. Резонансное			
	туннелированные.			
	Тема 16			
	Применение полупроводниковых наноструктур микроэлектронике. Полевые			
	транзисторы. Транзистор с плавающим затвором.			

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе обучения используются современные предметно-ориентированные и личностно-ориентированные образовательные технологии. При проведении лекций используются наглядны формы демонстрации учебного материала в виде презентаций, а также выступление приглашенных ученых, занимающихся исследованиями в области физики микро-и наносистем. Проведение семинаров предусматривает проведение дискуссий и выступления студентов с докладами на темы связанные с физикой и технологией наносистем.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(КП 1)	
ПК-10	3-ПК-10	Э, КИ-8, КИ-16	
	У-ПК-10	Э, КИ-8, КИ-16	
	В-ПК-10	Э, КИ-8, КИ-16	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой,

			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
	 		по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
		Е	выставляется студенту, если он имеет
	3 — «удовлетворительно»		знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
		F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
	2 — «неудовлетворительно»		материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 85 Наноматериалы и нанотехнологии : учебное пособие, Ганзуленко О. Ю. [и др.], Санкт-Петербург: Лань, 2022
- 2. ЭИ К 49 Наноплазмоника : учебное пособие, Климов В. В., Москва: Физматлит, 2010
- 3. 537 3-43 Принципы лазеров : , Звелто О., Санкт-Петербург [и др.]: Лань, 2008
- 4. 620 Д93 Углеродные нанотрубки : строение, свойства, применения, Дьячков П.Н., Москва: Бином. Лаборатория знаний, 2006
- 5. ЭИ Ш 18 Физика полупроводников : учебное пособие, Шалимова К. В., Санкт-Петербург: Лань, 2022
- 6. ЭИ Д 13 Элементарное введение в теорию наносистем : , Лебедев А. А., Посредник О. В., Давыдов С. Ю., Санкт-Петербург: Лань, 2022

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 539.2 К45 Введение в физику твердого тела:, Киттель Ч., М.: МедиаСтар, 2006
- 2. 541.5 Т88 Молекулярная фотохимия: , Турро Н., Москва: Мир, 1967

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

- 1. Образцы фотонных кристаллов (Э-205)
- 2. Образцы пористого кремния (Э-205)
- 3. Образцы полупроводниковых коллоидных квантовых точек (Э-205)
- 4. Демонстрационный проектор

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса студент должен твердо усвоить понятие наноструктур, их систематизацию, общие физические методы получения наноструктур и их характеризации, основные физические свойства и применения наноструктур.

При изучении первого раздела, необходимо учитывать, что основные принципы квантовой механики студентами младших курсов усваиваются обычно достаточно формально. Поэтому необходимо повторить основные принципы квантовой механик: операторы физических величин, принцип неопределенности, уравнение Шредингера и др. Основное внимание нужно уделить физическим выводам из решения квантовомеханических уравнений. При этом важным является вопрос: при каких размерах наноструктур и температурах экспериментально проявляется эффект размерного квантования. Для усвоения этих вопросов необходимо решить задачи, предложенные преподавателем по этой теме. Особое внимание нужно уделить сферической потенциальной яме с бесконечно высокими стенками. Это – модель полупроводниковой сферической квантовой точки. Студент должен познакомиться поведением частицы в центральном поле, где сохраняется момент c количества движения, с уравнением для квадрата момента, повторить закон квантования момента и его проекции на произвольную ось.

Второй раздел посвящен изложению современных методов получения наноструктур. Студент должен познакомиться с методами коллоидной химии, молекулярно-лучевой эпитаксии и др. Однако, с методической точки зрения особое место занимает метод термического напыления. Для успешного повторения этого раздела студент должен повторить молекулярно-кинетическую теорию газов и элементы вакуумной техники. Знания по молекулярной физике в объеме курса общей физики позволит студентам решать задачи, которые достаточно глубоко проясняют сущность метода и позволяют провести практически важные оценки и расчеты. Отдельного рассмотрения требуют методы получения наночастиц со свойствами плазмонного резонанса. Для успешного усвоения темы требуется в качестве

самостоятельной работы повторить в рамках курса общей физики элементарную теорию дисперсии для газов, твердых тел и плазмы и решать задачи, предложенные преподавателем по этой теме.

Студент должен усвоить общие принципы характеризации наноструктур как сразу после их изготовления, так и в процессе работы с ними. Одним из основных методов характеризации является электронная и атомно-силовая микроскопия. Для освоения электронной микроскопии необходимо вспомнить оптическую микроскопию и устройство оптического микроскопа. Это позволит лучше понять формирование изображений и увеличение в электронных лучах. При рассмотрении работы атомно-силового микроскопа студент должен знать устройство Для полупроводниковых фотодиодов. более эффективного усвоения интерференционной микроскопии полезно, в качестве самостоятельной работы, вспомнить интерферометрии, устройства наиболее принципы оптической интерферометров.

В качестве самостоятельно работы студент должен решать задачи, предложенные преподавателем.

Последний раздел курса — применения наноструктур. Студент должен усвоить общие направления применения наноструктур — в функциональной оптоэлектронике, медицине, современных методах анализа и т.п. При этом он должен понимать, в чем преимущества использования наноструктур по сравнению с традиционными методами

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При изложении первого раздела необходимо учитывать, что основные принципы квантовой механики студентами младших курсов усваиваются обычно достаточно формально. Поэтому необходимо повторение в общих чертах принципов квантовой механик: операторов физических величин, принципа неопределенности, уравнения Шредингера. С методами решения уравнения Шредингера для одномерных потенциальных ям студенты знакомы достаточно хорошо. Поэтому этот раздел можно дать для самостоятельной проработке или в форме задач. Основное внимание нужно уделить физическим выводам из решения квантовомеханических уравнений. При этом важным является вопрос: при каких размерах наноструктур и температурах экспериментально проявляется эффект размерного квантования. Этот вопрос можно оформить в виде задачи, но нужно помнить, что ее решение возможно только с помощью преподавателя. Часть занятия интересно посвятить сферической потенциальной яме с бесконечно высокими стенками. Это - модель полупроводниковой сферической квантовой точки. Полезно познакомить студента с поведением частицы в центральном поле, где сохраняется момент количества движения, рассмотреть уравнения для квадрата момента, закон квантования момента и его проекции на произвольную ось.

Второй раздел посвящен изложению современных методов получения наноструктур. Здесь необходимо рассмотреть методы коллоидной химии, молекулярно-лучевой эпитаксии и др. Однако, с методической точки зрения особое место занимает метод термического напыления. Действительно, изложение этого метода позволяет вспомнить и существенно дополнить знания студента по вакуумной технике. Знания по молекулярной физике в объеме курса общей физики позволяет студентам решать задачи, которые достаточно глубоко проясняют сущность метода и позволяют провести практически важные оценки и расчеты. Здесь уместно познакомить студентов с методом лазерного напыления, который активно развивается в университете. Отдельного рассмотрения требуют методы получения наночастиц

со свойствами плазмонного резонанса. Эффекты плазмонного резонанса можно изложить на основании элементарной теории дисперсии для плазмы.

Автор(ы):

Мартынов Игорь Леонидович, к.ф.-м.н.