Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВЫ ОПТОЭЛЕКТРОНИКИ

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	2	72	24	24	0		24	0	3
Итого	2	72	24	24	0	0	24	0	

АННОТАЦИЯ

В курсе рассматриваются следующие темы: воздействие оптического излучения на полупроводники; полупроводниковые фотоприемники и фотоэлектрические преобразователи изображения; полупроводниковые источники видимого и инфракрасного излучения; оптроны; устройства отображения информации; волоконно-оптические линии связи; элементы интегральной оптики; оптоэлектронные системы обработки информации

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются: формирование знаний по основным элементам оптоэлектронных систем, их устройстве и принципах работы

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к циклу дисциплин специализации, обеспечивающих подготовку по основам оптоэлектроники. Ее изучение базируется на следующих курсах:

- Математика;
- Общая физика;
- Неорганическая химия;
- Теоретические основы специальности: основы микроэлектроники;
- Материаловедение;
- -Технология интегральных микросхем.

Для освоения данной дисциплины необходимо:

- знать физические основы микроэлектроники, теорию работы и основные характеристики полупроводниковых приборов, их математические модели;
 - уметь выполнять численные оценки параметров оптоэлектронных приборов;
 - владеть навыками математических расчетов с использованием компьютера.

Освоение данной дисциплины необходимо при последующем изучении дисциплин:

- Проектирование интегральных микросхем;
- Микроэлектронные радиотехнические устройства;
- Основы видеотехники

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
	0 0 - 0 - 1 - 1 - 1 - 1		

профессиональной деятельности (ЗПД)	область знания	профессиональной компетенции;	индикатора достижения
деятельности (эпд)		Основание	
			профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
	Havanio-rec	опыта) гледовательский	
математическое	электронные	ПК-2.1 [1] - Способен	3-ПК-2.1[1] - Знать:
моделирование	приборы,	применять методы и	законы и
электронных приборов,	устройства,	концепции	экспериментальные
схем и устройств	установки, методы	экспериментальной	методы
различного	их исследования,	физики	экспериментальной
функционального	математические	конденсированного	физики
назначения на базе	модели	состояния вещества,	конденсированного
стандартных пакетов		лазерной физики,	состояния вещества,
автоматизированного		фотоники, физики	лазерной физики,
проектирования;		микро- и наносистем	физики микро- и
участие в		для решения	наносистем, принципы
планировании и		функциональных,	функционирования
проведении		технических и	элементов и устройств
экспериментов по		технологических	фотоники, опто- и
заданной методике,		проблем при создании	наноэлектроники;
обработка результатов		и эксплуатации	У-ПК-2.1[1] - Уметь:
с применением		элементов и устройств,	анализировать научно-
современных		функционирующих на	техническую
информационных		принципах опто- и	проблему,
технологий и		наноэлектроники	поставленную задачу в
технических средств;			области физики
анализ научно-		Основание:	конденсированного
технической		Профессиональный	состояния вещества,
информации,		стандарт: 40.011	физики наностуктур,
отечественного и			фотоники и предлагать
зарубежного опыта по			возможные пути ее
тематике исследования;			решения;
организация защиты			В-ПК-2.1[1] - Владеть:
объектов			навыками
интеллектуальной			экспериментальной
собственности и			работы на
результатов			специализированном научном оборудовании
исследований и разработок как			и устройствах в
разраооток как коммерческой тайны			области фотоники,
предприятий			физики наноструктур,
продприлтии			лазерной физики, опто-
			и наноэлектроники,
			моделирования и
			численных расчетов
			применительно к
			поставленной задаче
математическое	электронные	ПК-8.1 [1] - Способен	3-ПК-8.1[1] - законы и
моделирование	приборы,	применять методы и	экспериментальные
электронных приборов,	устройства,	концепции	методы физики

альной конденсированного
состояния вещества,
анного лазерной физики,
щества, физики микро- и
вики, наносистем, принципы
изики функционирования
осистем элементов и устройств
фотоники и
оптоэлектроники;
ских и У-ПК-8.1[1] -
анализировать научно-
создании техническую
ии проблему,
устройств, поставленную задачу в
ующих на области нанофотоники,
физики
ники и конденсированного
и состояния вещества,
физики наноструктур,
используя
льный отечественный и
011 зарубежный опыт, а
также предлагать
возможные пути ее
решения;
В-ПК-8.1[1] -
навыками
экспериментальной
работы на
специализированном
научном оборудовании
и устройствах в
области фотоники,
физики наноструктур,
лазерной физики, опто-
и наноэлектроники,
математического
моделирования
процессов и объектов
применительно к
поставленной задаче
особен 3-ПК-3[1] - Знание
ть и законов
оовать статистической
физики;
й, У-ПК-3[1] - Умение
тепень находить научную
ти информацию в базах
данных, выполнять её
альных анализ и
й, систематизацию,
i, energiamo,

функционального	полученные	результаты своих
назначения на базе	результаты с мировым	исследований в виде
стандартных пакетов	уровнем, представлять	докладов, отчётов и
автоматизированного	материалы в виде	публикаций.;
проектирования;	научных отчетов,	В-ПК-3[1] - Владение
участие в	публикаций,	методами обработки
планировании и	презентаций, баз	результатов измерений
проведении	данных	
экспериментов по		
заданной методике,	Основание:	
обработка результатов	Профессиональный	
с применением	стандарт: 01.001	
современных		
информационных		
технологий и		
технических средств;		
подготовка и		
составление обзоров,		
рефератов, отчетов,		
научных публикаций и		
докладов на научных		
конференциях и		
семинарах;		
организация защиты		
объектов		
интеллектуальной		
собственности и		
результатов		
исследований и		
разработок как		
коммерческой тайны		
предприятий		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное и	Создание условий,	Использование
трудовое воспитание	обеспечивающих, формирование	воспитательного потенциала
	культуры исследовательской и	дисциплин "Основы
	инженерной деятельности (В16)	конструирования и САПР",
		"Курсовой проект: основы
		конструирования и САПР",
		"Инженерная и компьютерная
		графика", "Детали машин и
		основы конструирования" для
		формирования навыков
		владения эвристическими
		методами поиска и выбора
		технических решений в
		условиях неопределенности
		через специальные задания

	Т	
		(методики ТРИЗ,
		морфологический анализ,
		мозговой штурм и др.),
		культуры инженера-
		разработчика через
		организацию проектной, в том
		числе самостоятельной работы
		обучающихся с
		использованием программных
TT 1		пакетов.
Профессиональное	Создание условий,	Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	ответственности за	дисциплин профессионального
	профессиональный выбор,	модуля для формирования у
	профессиональное развитие и	студентов ответственности за
	профессиональные решения (В18)	свое профессиональное
		развитие посредством выбора
		студентами индивидуальных
		образовательных траекторий,
		организации системы общения
		между всеми участниками
		образовательного процесса, в
		том числе с использованием
		новых информационных
		технологий.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	творческого	дисциплин профессионального
	инженерного/профессионального	модуля для развития навыков
	мышления, навыков организации	коммуникации, командной
	-	работы и лидерства,
	коллективной проектной	1
	деятельности (В22)	творческого инженерного
		мышления, стремления
		следовать в профессиональной
		деятельности нормам
		поведения, обеспечивающим
		нравственный характер
		трудовой деятельности и
		неслужебного поведения,
		ответственности за принятые
		решения через подготовку
		групповых курсовых работ и
		практических заданий, решение
		кейсов, прохождение практик и
		подготовку ВКР.
		2.Использование
		воспитательного потенциала
		дисциплин профессионального
		модуля для: - формирования
		производственного
		коллективизма в ходе
		совместного решения как

модельных, так и практически	X
задач, а также путем	
подкрепление рационально-	
технологических навыков	
взаимодействия в проектной	
деятельности эмоциональным	
эффектом успешного	
взаимодействия, ощущением	
роста общей эффективности	
при распределении проектных	
задач в соответствии с	
сильными компетентностными	1
и эмоциональными свойствами	1
членов проектной группы.	

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
1	8 Семестр Первый раздел	1-8	16/16/0		25	КИ-8	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1, 3-ПК-8.1, У-ПК-8.1, В-ПК-8.1, 3-ПК-3, У-ПК-3, В-ПК-3
2	Второй раздел	9-15	8/8/0		25	КИ-15	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1, 3-ПК-8.1, У-ПК-8.1, В-ПК-8.1, 3-ПК-3, У-ПК-3, В-ПК-3
	Итого за 8 Семестр		24/24/0		50		
	Контрольные мероприятия за 8				50	3	3-ПК-2.1, У-ПК-2.1,

Семестр			В-ПК-2.1,
			3-ПК-8.1,
			У-ПК-8.1,
			В-ПК-8.1,
			3-ПК-3,
			У-ПК-3,
			В-ПК-3

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	8 Семестр	24	24	0	
1-8	Первый раздел	16	16	0	
1 - 3	Введение	Всего а	Всего аудиторных часов		
	Понятие оптоэлектроники. Роль оптоэлектронной связи в	6	6	0	
	устройствах преобразования электрических и оптических	Онлайн			
	сигналов. Характеристика современного уровня оптоэлектроники.	0	0	0	
	Собственное оптическое поглощение. Поглощение света, связанное с фотоионизацией и возбуждением примесей. Поглощение света при переходах в квантовых ямах. Фотоионизация и фотопроводимость. Квантовый выход фотоионизации. Спектральная зависимость фотопроводимости.				
4 - 5	Полупроводниковые фотоприемники видимого и ИК	Всего аудиторных часов			
	излучения	4	4	0	
	Характеристики фотоприемников. Собственные и	Онлайн			
	примесные фоторезисторы. Выбор материалов и примесей для примесных фоторезисторов. Рабочие температуры примесных фоторезисторов. Фотоприемники на квантовых ямах. Фотодиоды. Структурные и электрофизические параметры, определяющие чувствительность и спектральную характеристику фотодиодов. Лавинно-пролетные и р-i-n фотодиоды. Фототранзисторы, фототиристоры.	0	0	0	
	Рекомбинационное излучение в полупроводниках. Инжекционные светодиоды. Материалы для светодиодов, их конструкции. Характеристики светодиодов —				

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	вольтамперная, спектральная, яркостная. Светодиоды на				
	гетеропереходах. Полупроводниковые лазеры – принцип				
	действия, конструкция. Лазеры на гетеропереходах				
6 - 8	Фотоэлектрические преобразователи изображения	Всего аудиторных часов			
	Режим работы фотоэлектрических преобразователей	6	6	0	
	изображения (ФЭПИ). Режим накопления заряда.	Онлай	íн		
	Фоточувствительные матрицы на основе фотоприемников	0	0	0	
	с накоплением заряда на емкости р-п перехода. Их				
	организация и параметры. ФЭПИ на основе приборов с				
	зарядовой связью (ПЗС). Способы организации				
	фоточувствительных матриц на основе ПЗС, их основные				
	параметры. Фотоматрицы на квантовых ямах				
9-15	Второй раздел	8	8	0	
9 - 11	Оптроны. Системы отображения информации	Всего	Всего аудиторных часов		
	Классификация и параметры элементарных оптронов.	3	3	0	
	Применение оптронов в электронных устройствах.	Онлай	íн		
	Конструкции оптронов.	0	0	0	
	Цифровые и буквенно-цифровые матричные панели на				
	основе сегментных индикаторов. Типы сегментных				
	индикаторов – электролюминесцентные, светодиодные,				
	жидкокристаллические. Схемы управления цифровыми				
	индикаторами, работающие в непрерывном и				
	мультиплексном режимах				
12 - 13	Волоконно-оптические линии связи		Всего аудиторных часов		
	Преимущества оптических линий связи. Физические	2	2	0	
	основы работы световода. Материалы для оптических	Онлайн			
	волоконных элементов. Основные характеристики	0	0	0	
	волоконных световодов. Применение волоконных				
	световодов.				
14 - 15	Элементы интегральной оптики. Оптоэлектронные		Всего аудиторных часов		
	системы обработки информации	3	3	0	
	Пленочные световоды. Призменные и решетчатые		Онлайн		
	элементы ввода-вывода излучения.	0	0	0	
	Принципиальная схема и основные функциональные				
	блоки электронно-оптических систем обработки				
	информации. Оптический процессор. Модуляторы и				
	дефлекторы светового излучения				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Традиционные лекции и лабораторные работы, а также самостоятельное повторение материала лекций и изучение дополнительной литературы

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-2.1	3-ПК-2.1	3, КИ-8, КИ-15
	У-ПК-2.1	3, КИ-8, КИ-15
	В-ПК-2.1	3, КИ-8, КИ-15
ПК-3	3-ПК-3	3, КИ-8, КИ-15
	У-ПК-3	3, КИ-8, КИ-15
	В-ПК-3	3, КИ-8, КИ-15
ПК-8.1	3-ПК-8.1	3, КИ-8, КИ-15
	У-ПК-8.1	3, КИ-8, КИ-15
	В-ПК-8.1	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на
70-74			вопрос.

65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В ходе освоения материалов дисциплины студентам рекомендуется уделять особое внимание следующим вопросам:

- 1. Оптическое поглощение в полупроводниках. Виды поглощения. Закон Бугера-Ламберта.
 - 2. Оптроны. Классификация оптронов. Параметры. Оптореле.

- 3. Прямозонные и не прямозонные полупроводники. Правило отбора. Спектральная зависимость коэффициента поглощения.
 - 4. Волоконно-оптические линии связи. Требования к материалам конструкции.
 - 5. Фотопроводимость. Квантовая эффективность фотоионизации.
 - 6. Элементы интегральной оптики. Материалы светопроводящих пленок.
- 7. Особенности поглощения ИК излучения. Примесное поглощение. Узкозонные полупроводники.
 - 8. Электрооптические дефлекторы дискретного типа. Дефлектор Брега.
 - 9. Фоторезисторы, фотодиоды.
- 10. Физические эффекты и материалы для реализации пространственно-временных модуляторов света.
 - 11. Фототранзисторы, фоторезисторы.
 - 12. Высококачественные спектроанализатор.
 - 13. Светодиоды. Материалы для светодиодов. Квантовая эффективность светодиодов.
 - 14. Ввод излучения в интегральные светодиоды.
 - 15. Методы повышения внешней квантовой эффективности светодиодов.
 - 16. Фото ПЗС.
 - 17. Многоэлементные фотоприемники. Режим накопления заряда.
 - 18. Полупроводниковые лазеры.
 - 19. Электролюминесцентные конденсаторы.
 - 20. Оптические процессоры. Принцип действия. Структурная схема

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При изложении ключевых вопросов, касающихся физических основ оптоэлектроники, имеет смысл напомнить студентам основные положения квантовой механики и статистики. При этом особое внимание следует уделить разделам Квантование свободного электромагнитного поля и Фотон. Основные понятия стоит вводить достаточно подробно, при необходимости повторяя наиболее сложные математические выкладки. Как показывает практика студенты зачастую частично забывают математический аппарат и ряд преобразований дается им с трудом. Рассматривая раздел Приборы оптоэлектроники, необходимо подробнее остановится на устройстве и физических принципах лазеров, а также на волоконно-оптических линиях связи, повсеместно вторгающихся в современный быт

Автор(ы):

Воронов Юрий Александрович, к.т.н., доцент