Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ЭКСТРЕМАЛЬНЫХ СОСТОЯНИЙ ВЕЩЕСТВА

ОДОБРЕНО УМС ТФ НИЯУ МИФИ

Протокол № 6

от 23.12.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

АВТОМАТИЗАЦИЯ ЭКСПЕРИМЕНТОВ ПО ФИЗИКЕ ВЫСОКОЙ ПЛОТНОСТИ ЭНЕРГИИ В ВЕЩЕСТВЕ

Направление подготовки (специальность)

[1] 14.03.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	32	0	0		40	0	Э
Итого	3	108	32	0	0	0	40	0	

АННОТАЦИЯ

Исследования по физике высокой плотности энергии в веществе при интенсивном импульсном воздействии необходимы для получения новых знаний о физических процессах и свойствах материалов в условиях сверхвысоких давлений, плотностей и температур. Эти сведения составляют научную основу перспективных энергетических проектов — управляемого термоядерного синтеза с инерционным удержанием плазмы, магнито-гидродинамических и магнито-кумулятивных генераторов, ядерных космических установок и т.п. Интенсивные пучки тяжелых ионов высокой энергии являются уникальным инструментом для создания материи с высокой плотностью энергии в веществе и исследований экстремального состояния вещества в воспроизводимых экспериментальных условиях.

Разноплановость проводимых на экспериментальных ускорительных установках исследований требует применение широкого круга детекторов, приборов и систем сбора данных. Для организации эффективной работы и получения результатов мирового уровня создаются комплексные системы автоматизации служащие для получения и обработки экспериментальных данных, диагностики пучка частиц, управления элементами линии транспортировки пучка и обеспечения радиационной безопасности. Такие системы универсальны легко и быстро адаптируются к различным требованиям и режимам проведения экспериментальных работ. Элементы таких систем включают, распределенные в рамках вычислительных сетей, модули, состоящие как из стандартных приборов (осциллографы, ПЗС камеры, детекторы пучка, манипуляторы и т.д.) так и специально разрабатываемых, построенных на основе микроконтроллеров, схемы.

Курс посвящен изучению основ построения систем автоматизации экспериментальных установок, универсальных подходов к организации сбора и обработки экспериментальных данных, управлению инженерными системами выводных каналов ускорительных установок, созданию легко масштабируемых измерительных систем. Приводятся практические примеры создания программных и аппаратных элементов систем автоматизации.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Использование САПР для подготовки физических экспериментов» является знакомство студентов с современными средствами проектирования установок. В результате обучения по программе курса студент должен: - получить навыки создания цифрового макета установки начиная со стадии концептуально дизайна и заканчивая рабочими чертежами а также научиться выполнять данные действия с учетом специфики международного сотрудничества.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения дисциплины Автоматизация экспериментов по физике высокой плотности энергии в веществе необходимы компетенции, сформированные у обучающихся в результате освоения следующих предшествующих дисципли:

Математика: Математический анализ; Векторный и тензорный анализ; Линейная алгебра

Теория функций комплексного переменного; Дифференциальные и интегральные уравнения; Обыкновенные дифференциальные уравнения; Уравнения математической физики;

Атомная физика. Теоретическая физика: статистическая физика; Квантовая механика; Экспериментальные методы физики твердого тела; Методы регистрации излучений. Основные положения курса Автоматизация экспериментов по физике высокой плотности энергии в веществе могут быть использованы для успешного выполнения Практики и Дипломной работы, а также при практической работе выпускников.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	учно-исследовательс		
Получение знаний в области радиационной экологии, воздействия радиации, физики элементарных частиц и космологии, описание явлений в данной области.	Элементарные частицы, детекторы элементарных частиц, ускорители элементарных частиц, источники излучения	ПК-1 [1] - Способен использовать научнотехническую информацию, отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области Основание: Профессиональный стандарт: 24.078	3-ПК-1[1] - знать отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области,; У-ПК-1[1] - уметь использовать научнотехническую информацию, отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и информационные ресурсы в своей

предметной области; В-ПК-1[1] - владеть современными компьютерными технологиями и методами использования информационных ресурсов в своей предметной области ПК-3 [1] - Способен 3-ПК-3[1] - знать Получение знаний в Элементарные области радиационной проводить физические основные физические частицы, экологии, воздействия эксперименты по законы и методы детекторы радиации, физики элементарных заданной методике, обработки данных; элементарных частиц У-ПК-3[1] - уметь составлять описания частиц, и космологии, работать по заданной ускорители проводимых описание явлений в элементарных исследований, отчетов, методике, составлять данной области. частиц, источники анализу результатов и описания проводимых излучения подготовке научных исследований и публикаций отчеты, подготавливать Основание: материалы для Профессиональный научных публикаций; стандарт: 24.078 В-ПК-3[1] - владеть навыками проведения физических экспериментов по заданной методике, основами компьютерных и информационных технологий, научной терминологией проектный ПК-23.2 [1] - Способен 3-ПК-23.2[1] - знать Участие в Ускорители формировании целей заряженных проводить методы проекта, решения частиц, детекторы, проектирование проектирования детекторов и установок задач, критериев и ядерные реакторы, детекторов и показателей энергетические в области физики ядра и установок; У-ПК-23.2[1] - уметь частиц достижения целей, в установки, построении структуры системы использовать их взаимосвязей, обеспечения Основание: стандартные пакеты выявлении безопасности Профессиональный программ для стандарт: 24.028 проектирования; приоритетов решения задач с учетом В-ПК-23.2[1] - владеть аспектов деятельности пакетами прикладных программ

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин

Профессиональное воспитание	Создание условий, обеспечивающих, формирование чувства личной ответственности за научнотехнологическое развитие России, за результаты исследований и их последствия (В17)	1.Использование воспитательного потенциала дисциплин профессионального модуля для формирования чувства личной ответственности за достижение лидерства России в ведущих научно-технических секторах и фундаментальных исследованиях, обеспечивающих ее экономическое развитие и внешнюю безопасность, посредством контекстного обучения, обсуждения социальной и практической значимости результатов научных исследований и технологических разработок. 2.Использование воспитательного потенциала дисциплин профессионального модуля для формирования социальной ответственности ученого за результаты исследований и их последствия, развития исследовательских качеств посредством выполнения учебноисследовательских заданий, ориентированных на изучение и проверку научных фактов, критический анализ публикаций в профессиональной области, вовлечения в реальные междисциплинарные научноисследовательские проекты.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование ответственности за профессиональный выбор, профессиональное развитие и профессиональные решения (В18)	Использование воспитательного потенциала дисциплин профессионального модуля для формирования у студентов ответственности за свое профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых информационных технологий.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического	1. Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов

	отношения к исследованиям лженаучного толка (В19)	научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научно-исследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий.
профессиональное воспитание	Создание условий, обеспечивающих, формирование культуры ядерной безопасности (В24)	1.Использование воспитательного потенциала блока профессиональных дисциплин для формирования чувства личной ответственности за соблюдение ядерной и радиационной безопасности, а также соблюдение государственных и коммерческих тайн. 2.Использование воспитательного потенциала содержания учебных дисциплин «Актуальные проблемы эксплуатации АЭС», «Основы экологической безопасности в ядерной энергетике», «Системы радиационного контроля» для формирование личной ответственности за соблюдение экологической и радиационной безопасности посредством изучения основополагающих документов по культуре ядерной безопасности, разработанных МАГАТЭ и

российскими регулирующими органами, норм и правил обращения с радиоактивными отходами и ядерными материалами. 3. Использование воспитательного потенциала учебных дисциплин «Контроль и диагностика ядерных энергетических установок», «Надежность оборудования атомных реакторов и управление риском», «Безопасность ядерного топливного цикла», «Ядерные технологии и экология топливного цикла» для формирования личной ответственности за соблюдение и обеспечение кибербезопасности и информационной безопасности объектов атомной отрасли через изучение вопросов организации информационной безопасности на объектах атомной отрасли, основных принципов построения системы АСУТП ядерных объектов, методов защиты и хранения информации, принципов построения глубокоэшелонированной и гибкой системы безопасности ядернофизических объектов. 4. Использование воспитательного потенциала содержания блока дисциплин «Экология», «Системы радиационного контроля», «Основы экологической безопасности в ядерной энергетике» для формирования ответственной экологической позиции посредством изучения вопросов обеспечения такого уровня безопасности АЭС, при котором воздействие на окружающую среду, обеспечивает сохранение природных систем, поддержание их целостности и жизнеобеспечивающих функций, через рассмотрение вопросов радиационного контроля при захоронении и переработки ядерных отходов, вопросов замыкания ядерного топливного цикла.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Јекции/ Практ. (семинары)/ Вабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	7 Семестр	1.0	1.610.10		2.5	CYC O	2 544
1	Первый раздел	1-8	16/0/0		25	CK-8	3-IIK- 1, y- IIK-1, B- IIK-1, 3-IIK- 3, y- IIK-3, B- IIK-3, 3-IIK- 23.2, y- IIK- 23.2,
2	Второй раздел	9-16	16/0/0		25	КИ-16	3-ПК- 1, y- ПК-1, B- ПК-1, 3-ПК- 3, y- ПК-3, B- ПК-3, 3-ПК- 23.2, y- ПК- 23.2,

Итого за 7 Семестр	32/0/0	50		
Контрольные		50	Э	3-ПК-
мероприятия за 7				1,
Семестр				У-
				ПК-1,
				В-
				ПК-1,
				3-ПК-
				3,
				У-
				ПК-3,
				B-
				ПК-3,
				3-ПК-
				23.2,
				У-
				ПК-
				23.2,
				В-
				ПК-
				23.2

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование		
чение			
СК	Семестровый контроль		
КИ	Контроль по итогам		
Э	Экзамен		

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,	
И		час.	, час.	час.	
	7 Семестр	32	0	0	
1-8	Первый раздел	16	0	0	
	Автоматизация экспериментов по физике высокой	Всего а	аудиторных	часов	
	плотности энергии в веществе 1	16	0	0	
	Обзор экспериментов по физике высокой плотности		Онлайн		
	энергии в веществе. Ускоритель в экспериментальных	0	0	0	
	исследованиях. Лазер в экспериментальных исследованиях.				
	Элементы эксперимента, требующие автоматизации.				
	Принципы построения распределенных систем				
	автоматизации. Основные программные и аппаратные				
	элементы распределенной системы автоматизации.				
	Построение автономных систем автоматизации. Обзор				
	доступных микроконтроллеров. Построение модулей				

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	автоматизации на основе элементов АСУТП. Введение в			
	принципы построения схем синхронизации на основе			
	логических элементов.			
	Автоматизация линий транспортировки пучков			
	заряженных частиц. Системы управления ионно-			
	оптическими элементами. Программы для расчета			
	траекторий пучков. Модули диагностики пучка. Системы			
	регистрации изображений пучка. Сервер для хранения			
	экспериментальных данных. Построение WEB			
	интерфейсов при управлении элементами систем			
	автоматизации. Визуализация результатов эксперимента.			
9-16	Второй раздел	16	0	0
	Автоматизация экспериментов по физике высокой	Dagge		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Автоматизация экспериментов по физике высокои	Beero a	удиторных	часов
	плотности энергии в веществе 2	16	тудиторных 0	0
			0	
	плотности энергии в веществе 2	16	0	
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную радиографию. Протонный микроскоп. Мишенный узел.	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную радиографию. Протонный микроскоп. Мишенный узел. Согласование ионно-оптической схемы протонного	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную радиографию. Протонный микроскоп. Мишенный узел. Согласование ионно-оптической схемы протонного микроскопа. Томография в протонной радиографии. Автоматизация экспериментов по радиобиологии. Автоматизация экспериментов по измерению пробегов	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную радиографию. Протонный микроскоп. Мишенный узел. Согласование ионно-оптической схемы протонного микроскопа. Томография в протонной радиографии. Автоматизация экспериментов по радиобиологии.	16 Онлайн	0	0
	плотности энергии в веществе 2 Автоматизация экспериментов по высокоэнергетической протонной радиографии. Введение в протонную радиографию. Протонный микроскоп. Мишенный узел. Согласование ионно-оптической схемы протонного микроскопа. Томография в протонной радиографии. Автоматизация экспериментов по радиобиологии. Автоматизация экспериментов по измерению пробегов	16 Онлайн	0	0

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Чтение лекций ведется с использование компьютерного проектор для показа презентаций, также проводится обсуждение некоторых вопросов, предполагающее активное участие студентов. Студенты записывают содержание лекций в которых они также выполняют домашние и самостоятельные работы. В лекциях делается акцент на общие подходы организации систем сбора и обработки экспериментальных данных и управления установками.

В ходе лекционных занятий будет проводиться интерактивная демонстрация работы отдельных программных и аппаратных элементов современных систем автоматизации экспериментов.

Для закрепления пройденного материала и развития самостоятельности студентам предлагается подготовить рефераты по следующим направлениям:

Системы управления современными ускорителями;

Высокоэнергетическая протонная радиография и протонная микроскопия;

Распределенные системы сбора и обработки экспериментальных данных;

Радиобиология и ионная терапия;

Автономные модули автоматизации на основе микроконтроллеров.

Системы регистрации изображений в физическом эксперименте;

Системы считывания и обработки электрических сигналов в физическом эксперименте.

Расчет ионно-оптической схемы ускорительной установки;

Детекторы интенсивных пучков заряженных частиц;

Мишенные манипуляторы в экспериментальных установках;

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	Э, СК-8, КИ-16
	У-ПК-1	Э, СК-8, КИ-16
	В-ПК-1	Э, СК-8, КИ-16
ПК-23.2	3-ПК-23.2	Э, СК-8, КИ-16
	У-ПК-23.2	Э, СК-8, КИ-16
	В-ПК-23.2	Э, СК-8, КИ-16
ПК-3	3-ПК-3	Э, СК-8, КИ-16
	У-ПК-3	Э, СК-8, КИ-16
	В-ПК-3	Э, СК-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его

			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74			материал, грамотно и по существу
			излагает его, не допуская
		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	E	выставляется студенту, если он имеет
60-64			знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 93 Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW 7: учебное пособие, Москва: ДМК Пресс, 2009
- 2. ЭИ М31 Основная элементная база электронных устройств : учебное пособие для вузов, Москва: НИЯУ МИФИ, 2012
- 3. ЭИ Г12 Оборудование для работы с ускоренными пучками : учебное пособие для вузов, Н. М. Гаврилов, С. В. Сомов, Москва: НИЯУ МИФИ, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Указания для прослушивания курса.

Перед началом занятий внимательно ознакомиться с учебным планом проведения лекций и списком рекомендованной литературы.

Перед посещением занятия освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания по выполнению самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы.

Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

Подготовить письменный отчет о проделанной работе.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Указания для проведениязанятий.

На первом занятии сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе. Дать перечень рекомендованной литературы и вновь появившихся литературных источников.

Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

При проведении занятий преимущественное внимание следует уделять качественным вопросам, не следует увлекаться простыми примерами, оставляя их либо на студентов, либо отсылая студентов к литературным источникам и методическим пособиям.

В процессе практических занятий необходимо по возможности часто возвращаться к основным понятиям (здесь возможен выборочный контроль знаний студентов).

Обязательно использовать ГОСТы, в которых используется общепринятая система обозначений.

Давать рекомендации студентам для подготовки к очередным практическим занятиям. Отмечать студентов, наиболее активно участвующих в решении задач и дискуссиях.

Автор(ы):

Канцырев Алексей Викторович, к.ф.-м.н.