Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ТВЕРДОГО ТЕЛА И НАНОСИСТЕМ

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИЧЕСКАЯ ОПТИКА

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	32	16	0		24	0	3
Итого	2	72	32	16	0	0	24	0	

АННОТАЦИЯ

Курс является одним из центральных в обучении бакалавров по профилю физики твердого тела.

Излагается теория излучения электромагнитных волн.

Из уравнений Максвелла строится геометрооптическое приближение, и выводятся основные законы геометрической оптики.

Рассматриваются вопросы дифракции и интерференции света, отражение и преломление световых волн на границе раздела.

Далее обсуждаются механизмы взаимодействия

излучения с заряженными частицами, эффект Вавилова-Черенкова, описываются современные методы лазерного ускорения частиц.

В конце курса даётся квантовая теория излучения.

Обсуждаются законы взаимодействия электромагнитного излучения с атомами и молекулами, необходимые для описания современных достижений физики лазеров.

Проводится обзор современных достижений лазерной физики, оптических и синхротронных методов исследований.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Излагается теория излучения электромагнитных волн.

Из уравнений Максвелла строится геометрооптическое приближение, и выводятся основные законы геометрической оптики.

Рассматриваются вопросы дифракции и интерференции света, отражение и преломление световых волн на границе раздела.

Далее обсуждаются механизмы взаимодействия

излучения с заряженными частицами, эффект Вавилова-Черенкова, описываются современные методы лазерного ускорения частиц.

В конце курса даётся квантовая теория излучения.

Обсуждаются законы взаимодействия электромагнитного излучения с атомами и молекулами, необходимые для описания современных достижений физики лазеров.

Проводится обзор современных достижений лазерной физики, оптических и синхротронных методов исследований.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Данная дисциплина готовит студентов к научной деятельности в области физики лазеров, исследования вещества оптическими и рентгеновскими методами.

Предполагается, что студент знаком с содержанием основных разделов курсов «Высшей математики» и «Общей физики». Приобрел начальную практику выполнения и обработки результатов экспериментальных работ в учебных физических лабораториях.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной	Объект или область знания	Код и наименование профессиональной	Код и наименование
деятельности (ЗПД)	ооласть знания	профессиональной компетенции;	индикатора достижения
A (3 / -/		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
		опыта)	
	научно-иссл	тедовательский	T
участие в обобщении	природные и	ПК-4 [1] - Способен	3-ПК-4[1] - Знать
полученных данных,	социальные явления	критически оценивать	основные методики и
формировании	и процессы,	применяемые методики	методы исследования
выводов, в подготовке	объекты техники,	и методы исследования	в сфере своей
научных и	технологии и		профессиональной
аналитических	производства,	Основание:	деятельности;
отчетов, публикаций и	модели, методы и	Профессиональный	У-ПК-4[1] - Уметь
презентаций	средства	стандарт: 25.049,	анализировать и
результатов научных	фундаментальных и	40.008, 40.011	критически оценивати
и аналитических	прикладных		применяемые
исследований	исследований и		методики и методы
участие в создании	разработок в		исследования.;
новых методов и	области математики,		В-ПК-4[1] - Владеть
технических средств	физики и других		навыками выбора и
исследований и новых	естественных и		критической оценки
разработок;	социально-		применяемых методи
	экономических наук		и методов
	по профилям		исследования в сфере
	предметной		своей
	деятельности в		профессиональной
	науке, технике,		деятельности
	технологиях, а		
	также в сферах		
	наукоемкого		
	производства,		
	управления и		
	бизнеса.	 ационный	
проведение	природные и	ПК-5 [1] - Способен	3-ПК-5[1] - Знать
фундаментальных и	социальные явления	управлять	основные методы и
прикладных	и процессы,	программами освоения	принципы управления
математических и	объекты техники,	новой продукции и	программами
физических	технологии и	технологии,	освоения новой
исследований,	производства,	разрабатывать	продукции и
направленных на	модели, методы и	эффективную	технологии,
решение инженерных,	средства	стратегию	разрабатывать
	. *	r	1 1
технических и	фундаментальных и		эффективную
технических и информационных	фундаментальных и прикладных	Основание:	эффективную стратегию в сфере

разработок в	стандарт: 29.002,	профессиональной
области математики,	40.011	деятельности.;
физики и других		У-ПК-5[1] - Уметь
естественных и		находить
социально-		оптимальные решения
экономических наук		при освоения новой
по профилям		продукции и
предметной		технологии,
деятельности в		разрабатывать
науке, технике,		эффективную
технологиях, а		стратегию.;
также в сферах		В-ПК-5[1] - Владеть
наукоемкого		навыками нахождения
производства,		оптимальных
управления и		решений для освоения
бизнеса.		новой продукции и
		технологии,
		разрабатывать
		эффективную
		стратегию

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	научного мировоззрения, культуры	дисциплин/практик «Научно-
	поиска нестандартных научно-	исследовательская работа»,
	технических/практических	«Проектная практика»,
	решений, критического отношения	«Научный семинар» для:
	к исследованиям лженаучного толка	- формирования понимания
	(B19)	основных принципов и
		способов научного познания
		мира, развития
		исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со

		студентами занятий и
		регулярных бесед;
		- формирования критического
		мышления, умения
		рассматривать различные
		исследования с экспертной
		позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных
		открытий и теорий.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	творческого	дисциплин профессионального
	инженерного/профессионального	модуля для развития навыков
	мышления, навыков организации	коммуникации, командной
	коллективной проектной	работы и лидерства,
	деятельности (В22)	творческого инженерного
	деятельности (В22)	мышления, стремления
		следовать в профессиональной
		деятельности нормам
		поведения, обеспечивающим
		нравственный характер
		трудовой деятельности и
		неслужебного поведения,
		ответственности за принятые
		решения через подготовку
		групповых курсовых работ и
		практических заданий, решение
		кейсов, прохождение практик и
		подготовку ВКР.
		2.Использование
		воспитательного потенциала
		дисциплин профессионального
		модуля для: - формирования
		производственного
		коллективизма в ходе
		совместного решения как
		модельных, так и практических
		задач, а также путем
		подкрепление рационально-
		технологических навыков
		взаимодействия в проектной
		деятельности эмоциональным
		эффектом успешного
		взаимодействия, ощущением
		роста общей эффективности при
		распределении проектных задач
		в соответствии с сильными
		компетентностными и
		эмоциональными свойствами
		omountainmin obonothum

		членов проектной группы.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	культуры безопасности при работе с	профильных дисциплин и всех
	лазерным излучением (В27)	видов практик для: -
		формирования культуры
		лазерной безопасности
		посредством тематического
		акцентирования в содержании
		дисциплин и учебных заданий,
		подготовки эссе, рефератов,
		дискуссий, а также в ходе
		практической работы с
		лазерным оборудованием
		формирования культуры
		безопасности при работе на
		экспериментальных и
		промышленных установках
		высокой мощности и
		имеющими повышенный
		уровень опасности через
		выполнение студентами
		практических и лабораторных
		работ, в том числе на
		оборудовании для исследования
		высокотемпературной плазмы.
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	культуры безопасности при работе	профильных дисциплин и всех
	на экспериментальных и	видов практик для: -
	промышленных установках высокой	формирования культуры
	мощности (В28)	лазерной безопасности
		посредством тематического
		акцентирования в содержании
		дисциплин и учебных заданий,
		подготовки эссе, рефератов,
		дискуссий, а также в ходе
		практической работы с
		лазерным оборудованием
		формирования культуры
		безопасности при работе на
		экспериментальных и
		промышленных установках высокой мощности и
		имеющими повышенный
		уровень опасности через
		выполнение студентами
		практических и лабораторных
		работ, в том числе на оборудовании для исследования
		высокотемпературной плазмы.
		высокотемпературной плазмы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины		Лекции/ Практ. (семинары)/ Лабораторные работы, час.	текущий пь (форма*,	Максимальный балл за раздел**	щия (форма*,	Индикаторы освоения компетенции
		Недели	Лекі (семі Лабо рабо	Обязат. контро: неделя)	Мак балл	Аттеста раздела неделя)	Инді осво комі
	7 Семестр						
1	Часть 1	1-8	16/8/0		25	КИ-8	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-5,
		0.15	1.5/0/0		22	YOYY 4.5	У-ПК-5, В-ПК-5
2	Часть 2	9-16	16/8/0		25	КИ-16	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-5, У-ПК-5, В-ПК-5
	Итого за 7 Семестр		32/16/0		50		
	Контрольные мероприятия за 7 Семестр				50	3	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-5, У-ПК-5, В-ПК-5

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек., час.	Пр./сем., час.	Лаб., час.
	7 Семестр	32	16	0

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

1-8	Часть 1	16	8	0
1	Тема 1	Всего а	аудиторных	х часов
	Микроскопические и макроскопические уравнения	2	1	0
	Максвелла, их происхождение. Распространение	Онлайі	H	
	электромагнитных волн в вакууме и сплошной	0	0	0
	однородной изотропной среде. Виды сред и их откликов.			
	Вывод волнового уравнения. Решения волнового			
	уравнения в виде плоских и сферических			
	монохроматических волн. Распространение энергии и			
	вектор Пойнтинга (изотропный случай).			
2	Тема 2	Всего а	аудиторных	х часов
	Векторные волны. Свойство поперечности	2	1	0
	электромагнитной волны. Полная, естественная и	Онлайі	Ŧ	1 -
	частичная поляризация. Матрица когерентности. Степень	0	0	0
	поляризации. Виды полной поляризации. Понятие		o o	
	двулучепреломления. Схемы поляризаторов, закон			
	Малюса.			
3	Тема 3	Всего а	аудиторных	х часов
	Распространение ЭМВ в анизотропных средах. Одноосные	2	1	0
	и двухосные кристаллы. Обыкновенная и необыкновенная	Онлайі	T	1
	волна. Распространение энергии. Набор примеров	0	0	0
	применения: эффект Поккельса, эффект Фарадея,		o o	
	оптическая индикатриса, коноскопические фигуры,			
	поляриметрия.			
4	Тема 4	Всего а	аудиторных	х часов
	Отражение и преломление поляризованного света.	2	1	0
	Формулы Френеля. Угол Брюстера, угол полного	Онлайі	H	
	внутреннего отражения. Стопа Столетова. Просветляющие	0	0	0
	покрытия и понятие интерференции. Распространение			
	импульса по оптоволокну.			
5	Тема 5	Всего а	аудиторных	х часов
	Фурье-разложение светового импульса во времени и	2	1	0
	пространстве. Спектроскопия, преобразование светового	Онлайі	H	
	пучка пространством и линзой. Принцип суперпозиции.	0	0	0
	Дифракция Френеля и Фраунгофера качественно,			
	дифракция Фраунгофера как фурье-разложение. Гауссов			
	пучок, его распространение, преобразование линзой,			
	свойства гауссова пучка (каустическая поверхность,			
	перетяжка, угол расходимости, поперечное распределение,			
	изменение волнового фронта).			
6	Тема 6	Всего а	аудиторных	х часов
	Геометрическая оптика: принцип Ферма, переход к	2	1	0
	медленным переменным, условия применимости,	Онлайі	H	
	параксиальное приближение, распространение в	0	0	0
	однородной изотропной среде, законы отражения и			
	преломления, зеркала и преломляющие поверхности			
	вращения. Матричная оптика: основные принципы, расчет			
	матриц основных оптических элементов, преобразования			
	радиусов волнового фронта. Правила знаков в матричной			
	и геометрической оптике. Неидеальность оптических			
	поверхностей. Понятие об аберрациях света и			
	разрешающей способности оптических систем.			
	11 1	1	I	1

7	Тема 7	Всего	аудиторны	х часов
•	Двухлучевая интерференция. Полосы равного наклона и	2	1	0
	равной толщины. Типы интерферометров.	Онлай	<u> </u>	10
	Интерферометры Юнга, Маха-Цендера, Майкельсона,	0	0	0
	звездный интерферометр Майкельсона. Интерферометрия	0	U	0
	как метод исследований в физике плазмы и космических			
	<u> </u>			
	исследованиях. Пространственная и временная			
	когерентность. Радиоинтерферометрия. Корреляционные			
0	функции, автокорреляция сигнала.	D		
8	Тема 8	-	аудиторны	
	Многолучевая интерференция. Интерферометр Фабри-	2	1	0
	Перо, его характеристики, использование для	Онлай		1
	спектроскопии. Принцип работы лазера. Замкнутый	0	0	0
	резонатор, открытый резонатор. Оптические резонаторы			
	лазеров: различные схемы, устойчивость резонатора,			
	добротность. Поперечные и продольные моды. Понятие			
	цилиндрических векторных пучков.			
9-16	Часть 2	16	8	0
9	Тема 9	Всего	аудиторны	х часов
	Общий принцип дифракции и интерференции: принцип	2	1	0
	суперпозиции полей. Дифракция Френеля в	Онлай	Н	
	цилиндрически симметричном случае: отверстие и диск.	0	0	0
	Зоны Френеля, спираль Френеля. Зонные пластинки,			
	амплитудные, фазовые шаблоны. Плоские линзы			
	(прожектора, фары) и рентгеновская оптика. Дифракция			
	Френеля в одномерном случае: полуплоскость, щель,			
	полоса. Спираль Корню.			
10	Тема 10	Всего	аудиторны	х часов
	Дифракция Фраунгофера на щели, квадратном и круглом	2	1	0
	отверстии. Дифракция Фраунгофера как преобразование	Онлай	H	•
	Фурье. Дифракционные решетки: общая формула, картина	0	0	0
	дифракции. Дифракционная решетка как спектральный			
	прибор. Разрешение и область дисперсии. Амплитудные,			
	отражательные, фазовые решетки. Одномерные,			
	двумерные и трехмерные решетки. Дифракция на			
	кристаллах и рентгеноструктурный анализ, рентгеновские			
	методы исследования вещества.			
11	Тема 11	Всего	аудиторны	х часов
	Скалярный и векторный потенциал ЭМП. Волновые	2	1	0
	уравнения для запаздывающих потенциалов. Понятие	Онлай	н	
	дальней (волновой) зоны. Мультипольное разложение.	0	0	0
	Дипольное излучение в классической оптике, диаграмма			
	направленности, интенсивность, полная мощность.			
	Излучение движущегося заряда: циклотронное и			
	синхротронное излучение. Эффект Вавилова-Черенкова,			
	эффект Доплера. Методы лазерного ускорения частиц:			
	ультракороткие импульсы, СРА/ОРСРА (пример на			
12	применение дифракционных решеток и нелинейных сред).	Dages	01/41/2022	V 110005
12	Тема 12		аудиторны □ 1	
	Классический линейный осциллятор в поле ЭМВ и	2	<u> 1</u>	0
	ансамбль осцилляторов. Дисперсия среды:	Онлай		
	диэлектрическая проницаемость, коэффициент	0	0	0

	преломления, коэффициент поглощения, нормальная и аномальная дисперсия. Сечения истинного, полного поглощения. Физика поглощения и рассеяния, отражения			
	и преломления. Предельные случаи: рэлеевское рассеяние			
	(в атмосфере), томпсоновское рассеяние на свободных			
	электронах, резонансная флуоресценция. Зондирование			
	плазмы радиоволнами. Рентгеновское поглощение и метод			
	XAFS. Аномальная (резонансная) рентгеновская			
	дифракция.			
13	Тема 13	Всего а	ц удиторных	часов
	Уширение линий поглощения и излучения: естественная,	2	1	0
	столкновительная, доплеровская ширина в газах,	Онлайн	T	
	штарковское уширение в кристаллах и уширение за счет	0	0	0
	столкновений с фононами решетки. Фазовая и групповая			
	скорость, распространение импульса в среде с дисперсией.			
	Элементы нелинейной оптики.			
14	Тема 14	Всего а	удиторных	часов
	Атомные спектры. Понятие квантования ЭМП,	2	1	0
	мультипольного разложения и свойств фотона.	Онлайн	H	
	Одноэлектронные и многоэлектронные спектры. Спектры	0	0	0
	ионизированной плазмы. L-S и j-j-связь. Происхождение			
	номенклатуры уровней и правил отбора. Заполнение			
	уровней. Молекулярные спектры: колебательные и			
	вращательные уровни и правила отбора. Схемы переходов			
	известных лазеров.			
15	Тема 15		аудиторных	часов
	Квантовая физика излучения. Тепловое излучение (модель	2	1	0
	замкнутого резонатора, формула Планка). Принцип	Онлайн	H	
	действия лазера. Порог генерации. Усиление. Спонтанное	0	0	0
	и вынужденное излучение. Коэффициенты Эйнштейна			
	(термодинамический подход). Сечение спонтанного и			
	вынужденного излучения, безызлучательные процессы,			
	трех- и четырехуровневые схемы, время жизни уровня.			
	Кратность вырождения, распределения Больцмана,			
	Ферми-Дирака и Бозе-Эйнштейна для квантовых частиц.			
16	Тема 16		удиторных	
	Квантовый ансамбль двухуровневых атомов. Матрица	2	1	0
	плотности. Скоростные уравнения для населенностей и	Онлайн		
	поляризации. Времена релаксации. Применение лазерной	0	0	0
	физики, синхротронного излучения и оптических методов			
	для исследований вещества.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты

ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание		
	7 Семестр		
1 - 2	Тема 1		
	Распространение плоских и сферических волн, их свойства, энергетика,		
	интенсивность и мощность. Операции с тензорами – умение выводить основные		
	векторные соотношения, подготовка к выводу формул для анизотропных сред.		
3 - 4	Тема 2		
	Поляризация и поляризаторы. Анализ поляризации света. Двулучепреломление в		
	одноосных кристаллах. Пластинки в полволны и четверть волны.		
5 - 6	Тема 3		
	Формулы Френеля. Стопа Столетова, угол Брюстера, просветляющие покрытия.		
	Спектральные разложения и фурье-анализ.		
7 - 8	Тема 4		
	Геометрическая оптика: принцип Ферма, преломляющие поверхности, основные		
	плоскости и правила знаков, построение изображений. Матричная оптика: вывод		
	формул для стандартных элементов матричным методом. Двухлучевая		
	интерференция: полосы равного наклона и равной толщины, двухлучевые		
	интерферометры. Интерферометр Фабри-Перо.		
9 - 10	Тема 5		
	Дифракция Френеля на отверстии, щели и других шаблонах, амплитудных и фазовых.		
	Дифракция Фраунгофера на щели и решетке. Дифракционная решетка как		
11 10	спектральный прибор.		
11 - 12	Тема 6		
	Дипольное излучение. Излучение движущихся источников заряда. Дисперсия,		
12 14	исследование плазмы, поглощение и рассеяние, фазовая и групповая скорость.		
13 - 14	Тема 7		
	Атомные и молекулярные спектры, распределение Больцмана, кратность вырождения		
15 16	уровней.		
15 - 16	Тема 8		
	Тепловое излучение. Лазеры. Спонтанное и вынужденное излучение в лазерах,		
	безызлучательные процессы. Сечения, скорости переходов, времена жизни уровней,		
	физика лазерных переходов, уширение линий.		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Программой курса предусмотрено, что студент должен продемонстрировать результаты освоения методов физической оптики в рамках самостоятельной работы при решении Большого домашнего задания.

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций и также самостоятельная работа студентов, заключающаяся в изучении материала, повторении ранее пройденных тем, подготовке к письменным тестам. Для того чтобы дать современное состояние физической оптики, предусмотрено широкое использование современных научных работ и публикаций по данной теме, посещение лабораторий НИЯУ

МИФИ. Рекомендуется посещение студентами научных семинаров и конференций, проводимых в НИЯУ МИФИ, а также в других московских университетах и институтах.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ПК-4	3-ПК-4	3, КИ-8, КИ-16
	У-ПК-4	3, КИ-8, КИ-16
	В-ПК-4	3, КИ-8, КИ-16
ПК-5	3-ПК-5	3, КИ-8, КИ-16
	У-ПК-5	3, КИ-8, КИ-16
	В-ПК-5	3, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
90-100	5 – «отлично»	A	последовательно, четко и логически
90-100			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»	D	по существу излагает его, не допуская
70-74			существенных неточностей в ответе на
			вопрос.
65-69	3 — «удовлетворительно»		Оценка «удовлетворительно»
		E	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.

	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
Ниже 60			значительной части программного
			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ S96 Principles of Lasers: , Svelto, Orazio. , Boston, MA: Springer US, 2010
- 2. ЭИ И 83 Задачи по квантовой физике : учебное пособие, Иродов И. Е., Москва: Лаборатория знаний, 2020
- 3. ЭИ И 83 Задачи по общей физике : учебное пособие для вузов, Иродов И. Е., Москва: Лаборатория знаний, 2021
- 4. 537 3-43 Принципы лазеров: , Звелто О., Санкт-Петербург [и др.]: Лань, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 535 А95 Физическая оптика : учебник для вузов, Никитин С.Ю., Ахманов С.А., Москва: Наука, 2004

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В результате освоения данной дисциплины студент должен знать основные понятия, методы, законы и уравнения физической оптики.

Должен научиться использовать методы физической оптики применительно к исследованию распространения оптического излучения в различных средах, знать основные экспериментальные методики, основанные на принципах физической оптики.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

В результате освоения данной дисциплины студент должен знать основные понятия, методы, законы и уравнения физической оптики.

Должен научиться использовать методы физической оптики применительно к исследованию распространения оптического излучения в различных средах, знать основные экспериментальные методики, основанные на принципах физической оптики.

Автор(ы):

Кашурникова Ольга Владимировна

Маймистов Андрей Иванович, д.ф.-м.н., профессор