Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА АВТОМАТИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ЧАСТЬ 1)

Направление подготовки (специальность)

[1] 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	4	144	15	45	0		30	0	Э
Итого	4	144	15	45	0	0	30	0	

АННОТАЦИЯ

Дисциплина рассматривает вопросы разработки и реализации информационных систем. Лабораторные работы позволяют приобрести практические навыки в системном и сетевом программировании.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью курса является подготовка специалиста, владеющего современными информационными технологиями в объеме, требуемом для эффективного выполнения профессиональных функций.

Основной учебной задачей изучения дисциплины является реализация требований, установленных в Государственном образовательном стандарте высшего профессионального образования. В процессе изучения дисциплины ставятся задачи:

- освоение системного и сетевого программирования, создание программных продуктов;
- формирование продвинутого уровня знаний и практических навыков для успешного применения новых информационных продуктов и технологий в области автоматизации физических установок.

В результате освоения дисциплины студент должен:

- Научиться решать поставленные перед ним задачи
- Научиться понимать код программ
- Получить навыки составления алгоритмов
- Получить навыки программирования на языках С
- Овладеть навыками системного программирования
- Овладеть навыками сетевого программирования
- Получить базовые знания для последующего обучения

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения данной дисциплины необходимы знания из курса "Информатика"

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
--------------------------------	--

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	

		опыта)	
	научно-иссл	едовательский	
Анализ и подготовка	технологическое	ПК-3.1 [1] - способен	3-ПК-3.1[1] - знать
данных для	оборудование,	к обобщению и	основные требования
составления обзоров,	информационно-	формулированию	к составлению
отчетов и научных	измерительные	результатов	научных отчетов и
публикаций, участие	системы, системы	исследований, к	оформлению других
во внедрении	контроля и	представлению их на	результатов
результатов	управления,	конференциях, к	интеллектуальной
исследований и	автоматизированные	подготовке	деятельности;
разработок	системы управления	публикаций, к	У-ПК-3.1[1] - уметь
	технологическими	оформлению объектов	использовать
	процессами атомных	интеллектуальной	информационные
	станций и других	собственности	технологии для
	ядерных		представления
	энергетических	Основание:	результатов НИР;
	установок	Профессиональный	В-ПК-3.1[1] - владеть
		стандарт: 40.008,	навыками
		40.011	представления и
			защиты результатов
			НИР в
			профессиональной
			среде
Математическое	технологическое	ПК-3.2 [1] - Способен	3-ПК-3.2[1] - знать
моделирование	оборудование,	к теоретическому и	методы
физических и	информационно-	экспериментальному	моделирования
технологических	измерительные	исследованию	технологических и
процессов в	системы, системы	технологических	информационных
оборудовании,	контроля и	процессов и	процессов и
алгоритмов контроля	управления,	процессов управления	процессов управления
и управления,	автоматизированные	на основе моделей	в системах контроля и
режимов	системы управления	на основе моделен	управления атомных
эксплуатации	технологическими	Основание:	станций и других
атомных объектов, в	процессами атомных	Профессиональный	ядерных
том числе с	станций и других	стандарт: 40.008,	энергетических
использованием	ядерных	40.011	установок;
стандартных пакетов	энергетических	40.011	У-ПК-3.2[1] - уметь
-	*		разрабатывать
автоматизированного проектирования и	установок		физико-
• •			математические
исследования, а также			модели объекта
с применением			
специально разрабатываемого			контроля и
			управления и
программного обеспечения			алгоритмы
КИНЈРЈПЈЈЈЈ			управления ядерными
			энергетическими
			установками;
			В-ПК-3.2[1] - владеть
			современными
			информационными
			технологиями,
			программно-

			инструментальными
			средствами,
			инженерными
			пакетами САПР для
			проведения научных
			исследований и
			вычислительных
	1	TV4 4 541 G	экспериментов
проектирование,	ядерно-физические	ПК-1 [1] - Способен	3-ПК-1[1] - знать
создание и	процессы,	использовать научно-	современную
эксплуатация атомных	протекающие в	техническую	техническую
станций и других	оборудовании и	информацию,	информацию,
ядерных	устройствах для	отечественный и	отечественный и
энергетических	выработки,	зарубежный опыт в	зарубежный опыт в
установок,	преобразования и	области	области
вырабатывающих,	использования	проектирования и	проектирования и
преобразующих и	ядерной и тепловой	эксплуатации	эксплуатации ядерных
использующих	энергии;	ядерных	энергетических
тепловую и ядерную	безопасность	энергетических	установок;
энергию, включая	эксплуатации и	установок	У-ПК-1[1] - уметь
входящие в их состав	радиационный		использовать научно-
системы контроля,	контроль атомных	Основание:	техническую
защиты, управления и	объектов и	Профессиональный	информацию для
обеспечения ядерной	установок;	стандарт: 24.078,	проектирования и
и радиационной	yeranobok,	40.008, 40.011	эксплуатации ядерных
безопасности		40.000, 40.011	энергетических
осзопасности			-
			установок; В-ПК-1[1] - владеть
			методами поиска и
			анализа научно-
			технической
			информации и опыта в
			области
			проектирования и
			эксплуатации ядерных
			энергетических
			установок
проектирование,	ядерно-физические	ПК-2 [1] - Способен	3-ПК-2[1] - знать
создание и	процессы,	проводить	методы
эксплуатация атомных	протекающие в	математическое	математематического
станций и других	оборудовании и	моделирование для	анализа для
ядерных	устройствах для	анализа всей	моделирования
энергетических	выработки,	совокупности	процессов в ядерно-
установок,	преобразования и	процессов в ядерно-	энергетическом и
вырабатывающих,	использования	энергетическом и	тепломеханическом
преобразующих и	ядерной и тепловой	тепломеханическом	оборудовании АЭС;
использующих	энергии;	оборудовании АЭС	У-ПК-2[1] - уметь
тепловую и ядерную	безопасность		проводить
энергию, включая	эксплуатации и	Основание:	математическое
входящие в их состав	радиационный	Профессиональный	моделирование
системы контроля,	контроль атомных	стандарт: 24.078,	процессов в ядерно-
защиты, управления и	объектов и	40.008, 40.011	энергетическом и
защиты, управления и	CODCRIOD II	10.000, 70.011	oneprein teckow n

обеспечения ядерной и радиационной безопасности	установок;		тепломеханическом оборудовании АЭС,; В-ПК-2[1] - владеть стандартными пакетами автоматизированного проектирования и исследований				
Пистем	проектный						
Проектирование элементов оборудования, технологических систем, информационно-измерительных систем, систем контроля, управления и автоматизации и их структурных элементов, включая аппаратное и программное обеспечение, в соответствии с техническим заданием с использованием с редств автоматизации проектирования и современных информационных технологий, с учетом экологических требований и	технологическое оборудование, информационно- измерительные системы, системы контроля и управления, автоматизированные системы управления технологическими процессами атомных станций и других ядерных энергетических установок	ПК-3.3 [1] - способен к разработке компьютерных систем сбора, передачи и обработки данных в системах контроля и управления физическими и ядерно-физическими объектами и установками Основание: Профессиональный стандарт: 40.008	3-ПК-3.3[1] - знать современные стандарты, технологии и языки программирования, основные интерфейсы и принципы построения промышленных компьютерных сетей; У-ПК-3.3[1] - уметь применять современную методологию разработки компьютерных систем и сетей; В-ПК-3.3[1] - владеть современными пакетами САПР, интегрированными средами разработки, средствами анализа данных				
требований безопасной работы проектирование, создание и эксплуатация атомных станций и других ядерных энергетических установок, вырабатывающих, преобразующих и использующих тепловую и ядерную энергию, включая входящие в их состав системы контроля, защиты, управления и	ядерно-физические процессы, протекающие в оборудовании и устройствах для выработки, преобразования и использования ядерной и тепловой энергии; ядерно-энергетическое оборудование атомных электрических станций и других	ПК-5 [1] - Способен формулировать цели проекта, выбирать критерии и показатели, выявлять приоритеты решения задач Основание: Профессиональный стандарт: 24.078, 40.008, 40.011	3-ПК-5[1] - знать методологию проектной деятельности; жизненный цикл проекта, основные критерии и показатели эффективности и безопасности; ; У-ПК-5[1] - уметь формулировать цели и задачи проекта;; В-ПК-5[1] - владеть методами анализа результатов				

обеспечения ядерной	ядерных		проектной
и радиационной	энергетических		деятельности
безопасности	установок;		
	безопасность		
	эксплуатации и		
	радиационный		
	контроль атомных		
	объектов и		
	установок;		
проектирование,	ядерно-физические	ПК-8 [1] - Способен	3-ПК-8[1] - Знать
создание и	процессы,	использовать	основные физические
эксплуатация атомных	протекающие в	информационные	законы и стандартные
станций и других	оборудовании и	технологии при	прикладные пакеты
ядерных	устройствах для	разработке новых	используемые при
энергетических	выработки,	установок,	проектировании
установок,	преобразования и	материалов, приборов	физических установок
вырабатывающих,	использования	и систем, готовностью	и систем; ;
преобразующих и	ядерной и тепловой	осуществлять сбор,	У-ПК-8[1] - уметь
использующих	энергии; ядерно-	анализ и подготовку	применять
тепловую и ядерную	энергетическое	исходных данных для	информационные
энергию, включая	оборудование	проектов ЯЭУ и их	технологии и
входящие в их состав	атомных	компонентов	прикладные пакеты
системы контроля,	электрических		используемые при
защиты, управления и	станций и других	Основание:	проектировании
обеспечения ядерной	ядерных	Профессиональный	физических установок
и радиационной	энергетических	стандарт: 24.078,	и систем;;
безопасности	установок;	40.008	В-ПК-8[1] - владеть
	безопасность		методами анализа и
	эксплуатации и		исходных данных для
	радиационный		проектов ЯЭУ и их
	контроль атомных		компонентов
	объектов и		
	установок;		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала

ЫХ
ать
OM
тий
O'
I
В
]
c
ах и

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	8 Семестр						

1	Раздел 1. Сетевые технологии.	1-8	7/20/0	40	T-8	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3.2, У-ПК-3.2, В-ПК-3.2
2	Раздел 2. Winsock.	9-15	8/25/0	40	T-15	3-ПК-3.2, У-ПК-3.2, В-ПК-3.2, 3-ПК-3.3, У-ПК-3.3, В-ПК-3.3
	Итого за 8 Семестр		15/45/0	80		
	Контрольные мероприятия за 8 Семестр			20	Э	3-IIK-1, Y-IIK-1, B-IIK-1, 3-IIK-2, Y-IIK-2, B-IIK-3.1, Y-IIK-3.1, B-IIK-3.2, Y-IIK-3.2, B-IIK-3.2, 3-IIK-3.3, Y-IIK-3.3, B-IIK-5, Y-IIK-5, B-IIK-5, B-IIK-8, Y-IIK-8, B-IIK-8,

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	8 Семестр	15	45	0
1-8	Раздел 1. Сетевые технологии.	7	20	0

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

1 - 2	Тема 1. Введение в сетевые технологии.	Всего	аудиторны	х часов	
	Классификация сетей. Управление доступом к среде	1	4	0	
	передачи данных. Адресация. Повторители, мосты,	Онлай	Н		
	коммутаторы и маршрутизаторы. Протоколы и стандарты.	0	0	0	
3	Тема 2. Эталонная сетевая модель OSI.	Всего аудиторных часов			
	Межуровневые взаимодействия. Физический уровень.	1	4	0	
	Канальный уровень. Сетевой уровень. Транспортный	Онлай	Н	1	
	уровень. Сеансовый уровень. Представительский уровень.	0	0	0	
	Прикладной уровень.				
4	Тема 3. Протоколы канального уровня.	Всего	Всего аудиторных часов		
	Ethernet. Frame Relay. ATM. IDSN. Token Ring. 100VG	1	2	0	
	AnyLAN. FDDI.		Н		
		0	0	0	
5 - 6	Тема 4. ТСР/ІР.	Всего аудиторных часов			
	Особенности TCP/IP. Архитектура TCP/IP. Протоколы	2	4	0	
	TCP/IP.	Онлай	Н		
		0	0	0	
7	Tема 5. NetBIOS, NetBEUI и Server Message Blocks.		Всего аудиторных часов		
	NetBIOS, NetBEUI и SMB.	1	2	0	
			Онлайн		
		0	0	0	
8	Тема 6. Введение в Winsock.		Всего аудиторных часов		
	Сетевые протоколы поддерживаемые Win32. Сокеты	1	4	0	
	Windows. Winsock и модель OSI.		Онлайн		
		0	0	0	
9-15	Раздел 2. Winsock.	8	25	0	
9 - 10	Тема 7. Семейства адресов и разрешение имен.	Всего	аудиторны	х часов	
	Вопросы создания сокетов и адресации для различных	2	8	0	
	протоколов.	Онлай	Н		
		0	0	0	
11 - 12	Тема 8. Основы Winsock.		аудиторны	х часов	
	Инициализация Winsock. Проверка и обработка ошибок.	2	8	0	
	Протоколы с установлением соединения. Протоколы, не		Н		
	требующие соединения. Дополнительные функции АРІ.	0	0	0	
13 - 15	Тема 9. Ввод-вывод в Winsock.	Всего	аудиторны	х часов	
	Режимы работы сокетов. Модели ввода-вывода сокетов и	4	9	0	
	их сравнение. Параметры сокета. Функции Ioctlsocket и		Онлайн		
	WSAIoctl.	0	0	0	
		•	1		

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание			
	8 Семестр			
1 - 4	Тема 1. Введение в сетевые технологии.			
	Цель: знакомство студентов с эталонной сетевой моделью OSI.			
	Содержание: изучение структур пакетов сетевых протоколов при помощи сетевого			
	анализатора. Форма проведения: интерактивная. Контроль достижения цели: защита			
	отчета по лабораторной работе.			
5 - 6	Тема 2. Адресация TCP/IP.			
	Цель: научить студентов разрабатывать компьютерные сети на основе стека TCP/IP.			
	Содержание: рассмотрение задач адресации для различных видов сетей. Форма			
	проведения: интерактивная. Контроль достижения цели: защита отчета по			
	лабораторной работе.			
7 - 8	Тема 3. Процесс установления соединения протоколом ТСР.			
	Цель: Изучение процесса установления и разрыва соединения протоколом ТСР.			
	Содержание: анализ пакетов ТСР при помощи сетевого анализатора. Форма			
	проведения: интерактивная. Контроль достижения цели: защита отчета по			
0 10	лабораторной работе.			
9 - 10	Тема 4. UDP клиент и сервер.			
	Цель: научить студентов разрабатывать сетевые приложения на основе протокола			
	UDP.			
	Содержание: программирование UDP клиента и сервера. Форма проведения:			
11 - 13	интерактивная. Контроль достижения цели: защита отчета по лабораторной работе.			
11 - 13	Тема 5. Простые ТСР клиент и сервер.			
	Цель: научить студентов разрабатывать сетевые приложения на основе протокола TCP.			
	Содержание: программирование ТСР клиента и сервера. Форма проведения:			
	интерактивная. Контроль достижения цели: защита отчета по лабораторной работе.			
14 - 15	Тема 6. ТСР клиент и сервер с расширенными возможностями.			
11 13	Цель: научить студентов разрабатывать сетевые приложения на основе протокола			
	ТСР.			
	Содержание: программирование ТСР клиента и сервера с расширенными			
	возможностями. Форма проведения: интерактивная. Контроль достижения цели:			
	защита отчета по лабораторной работе.			
	<u> </u>			

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- Аудиторные занятия (чтение лекций)
- Самостоятельная работа студентов в форме подготовки отчетов по лабораторным работам

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(К П 1)
ПК-1	3-ПК-1	Э, Т-8
	У-ПК-1	Э, Т-8
	В-ПК-1	Э, Т-8
ПК-2	3-ПК-2	ϵ
	У-ПК-2	ϵ
	В-ПК-2	ϵ
ПК-3.1	3-ПК-3.1	ϵ
	У-ПК-3.1	Э
	В-ПК-3.1	Э
ПК-3.2	3-ПК-3.2	Э, Т-8, Т-15
	У-ПК-3.2	Э, Т-8, Т-15
	В-ПК-3.2	Э, Т-8, Т-15
ПК-3.3	3-ПК-3.3	Э, Т-15
	У-ПК-3.3	Э, Т-15
	В-ПК-3.3	Э, Т-15
ПК-5	3-ПК-5	Э
	У-ПК-5	Э
	В-ПК-5	Э
ПК-8	3-ПК-8	Э
	У-ПК-8	Э
	В-ПК-8	Э

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69	3 –		Оценка «удовлетворительно»

	«удовлетворительно»		выставляется студенту, если он имеет
		Е	знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ С 60 Практическое введение в язык программирования Си : учебное пособие, Попов И. В., Солдатенко И. С., Санкт-Петербург: Лань, 2022
- 2. ЭИ Ф60 Программирование в системе Windows с помощью объектно-ориентированный библиотек : лабораторный практикум, Финогенов К.Г., Москва: МИФИ, 2008
- 3. 004 КЗ6 Язык программирования С:, Ритчи Д., Керниган Б., Москва [и др.]: Вильямс, 2015
- 4. 004 С83 Язык программирования С++:, Страуструп Б., Москва: Бином-Пресс, 2007

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 004 C38 Операционные системы : учеб. пособие, Налютин Н.Ю., Синицын С.В., Москва: МИФИ, 2006
- 2. 004 К36 Язык программирования С : , Ритчи Д., Керниган Б., Москва [и др.]: Вильямс, 2013

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

- 1. Microsoft Visual Studio
- 2. Wireshark.

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Указания для прослушивания курса

Перед началом занятий внимательно ознакомиться с учебным планом и списком рекомендованной литературы.

Вспомнить основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

Основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Желательно использовать учебные пособия, в которых используется принятая преподавателем система обозначений.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания для выполнения самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы. Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

Подготовить письменный отчет о проделанной работе.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Указания для проведения лекций

Сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе. Дать перечень рекомендованной литературы и вновь появившихся литературных источников.

Перед изложением текущего материала напомнить об основных итогах, достигнутых на предыдущих занятиях. С этой целью задать несколько вопросов аудитории и осуществить выборочный контроль знания студентов.

Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

Преимущественное внимание следует уделять качественным вопросам, не следует увлекаться простыми теоретическими выкладками, оставляя их либо на студентов, либо отсылая студентов к литературным источникам и методическим пособиям.

В процессе чтения курса возвращаться к основным понятиям (здесь возможен выборочный контроль знаний студентов).

Желательно использовать учебные пособия, в которых используется принятая преподавателем система обозначений.

Давать рекомендации студентам для подготовки к очередным занятиям.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания по контролю самостоятельной работы студентов

Задание на самостоятельную работу выдается индивидуально каждому студенту.

По результатам самостоятельной работы требовать от студента письменный отчет о проделанной работе с данными расчета, моделирования и экспериментальной проверки схемы.

Автор(ы):

Просандеев Антон Валерьевич