Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ

577 ОТДЕЛЕНИЕ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ ОФИСА ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ (M)

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ КВАНТОВЫХ СИСТЕМ

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	2	72	20	20	0		32	0	3
Итого	2	72	20	20	0	15	32	0	

АННОТАЦИЯ

Дисциплина содержит принципы распараллеливания вычислительных задач квантовой электродинамики отдельных зарядов и поля с ограниченными видами взаимодействий, предназначенных для создания квантовых компьютеров и иных приборов обработки квантовой информации. Дисциплина включает в себя: конечномерные модели КЭД, элементы теории открытых квантовых систем в марковском окружении, компьютерные методы моделирования много-кубитных систем зарядов и поля. Акцент делается на изучении состояний атомных ансамблей, устойчивых к декогерентности и допускающих простое управление.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина содержит принципы распараллеливания вычислительных задач квантовой электродинамики отдельных зарядов и поля с ограниченными видами взаимодействий, предназначенных для создания квантовых компьютеров и иных приборов обработки квантовой информации. Дисциплина включает в себя: конечномерные модели КЭД, элементы теории открытых квантовых систем в марковском окружении, компьютерные методы моделирования много-кубитных систем зарядов и поля. Акцент делается на изучении состояний атомных ансамблей, устойчивых к декогерентности и допускающих простое управление.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Курс является односеместровым. Для понимания курса необходимо успешное усвоения материалов других курсов, посвященных введению в квантовую физику.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
--------------------------------	--

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	экспертно-	аналитический	
Сбор и обработка	Результаты	ПК-12.1 [1] - Способен	3-ПК-12.1[1] - Знать
научной и	исследований,	свободно владеть	основные методики,
аналитической	научные и	профессиональными	цели и задачи
информации с	аналитические	знаниями для анализа и	построения
использованием	отчеты, научные	синтеза физической	аналитических и

современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий; изучение и анализ научнотехнической информации, отечественного и зарубежного опыта по тематике исследования; участие в обобщении полученных данных, формировании выводов, в подготовке научных и аналитических отчетов, публикаций и презентаций результатов научных и аналитических исследований

публикации информации в областях квантовых оптических технологий, физике квантовой коммуникации и

квантовых вычислений, лазерной физики и нелинейной оптики

Основание: Профессиональный стандарт: 06.022

количественных моделей процессов в областях квантовой и лазерной физики.; У-ПК-12.1[1] - Уметь строить аналитические и количественные модели процессов в в областях квантовой и лазерной физики и выбирать на их основе пути решения теоретических и практических проблем.; В-ПК-12.1[1] -Владеть навыками построения аналитических и количественных моделей процессов в областях квантовой и лазерной физики и выбора на их основе путей решения теоретических и практических проблем.

научно-исследовательский

Участие в создании новых методов и технических средств исследований и новых разработок; участие в разработке новых алгоритмов и компьютерных программ для научноисследовательских и прикладных целей; выбор методов и подходов к решению поставленной научной проблемы, формулировка математической модели явления, аналитические и численные расчеты

Природные явления и процессы, объекты техники, технологии и производства, модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и сошиальноэкономических наук по профилям предметной деятельности в науке, технике, технологиях

ПК-12.3 [1] - Способен к участию в проведении наблюдений и измерений, выполнению эксперимента и обработке данных с использованием современных компьютерных технологий в области физики квантовых, лазерных и оптических технологий

Основание: Профессиональный стандарт: 40.011

3-ПК-12.3[1] - Знать основные достижения квантовой и лазерной физики, оптических технологий, а также возможности современной экспериментальной техники; У-ПК-12.3[1] - Уметь применять основные модели квантовой и лазерной физики для оценки параметров эксперимента; В-ПК-12.3[1] -Владеть аппаратом и методологией теоретической физики, а также объемом знаний, дающем целостное

			представление о
			предмете и
			позволяющем
			осуществлять
			профессиональную
			деятельность в
			области физики
			квантовых, лазерных
			и оптических
			технологий
	организационн	о-управленческий	
Контроль	Проектная и рабочая	ПК-12.4 [1] - Способен	3-ПК-12.4[1] - Знать
соответствия	техническая	организовывать и	аппарат и
выполненных работ	документация,	планировать	методологию
требованиям	отчеты по проекту,	исследования, ставить	теоретического и
технического задания	документация для	конкретные задачи	математического
и соотношения	системы	научных исследований	исследования в
получаемых	менеджмента	в области физики	области физики
результатов с	качества	квантовых, лазерных и	квантовых, лазерных
известными	предприятия	оптических	и оптических
мировыми		технологий, и решать	технологий, а также
разработками и		их с помощью	методы разработки и
образцами в данной		современной	оформления
области		аппаратуры и	соответствующей
исследований;		оборудования	документации;
составление			У-ПК-12.4[1] - Уметь
технической		Основание:	формулировать
документации		Профессиональный	исходные данные и
(графиков работ,		стандарт: 40.011	выбирать и
инструкций, планов,			обосновывать научно-
смет, заявок на			технические и
материалы,			организационные
оборудование и т.п.),			решения в области
а также			физики квантовых,
установленной			лазерных и
отчетности по			оптических
утвержденным			технологий,
формам			разрабатывать и
			оформлять
			соответствующую
			документацию,
			эффективно
			взаимодействовать со
			специалистами
			смежных профилей.; В-ПК-12.4[1] -
			Владеть навыками
			формулировать
			исходные данные и
			выбирать и
			обосновывать научно-
			технические и
			10AIIII 100KHC II

	организационные
	решения в области
	физики квантовых,
	лазерных и
	оптических
	технологий, навыками
	разработки и
	оформления
	соответствующей
	документации,
	навыками
	эффективного
	взаимодействия со
	специалистами
	смежных профилей.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное развитие	профессиональное развитие
	и профессиональные	посредством выбора студентами
	решения (В18)	индивидуальных образовательных
		траекторий, организации системы
		общения между всеми участниками
		образовательного процесса, в том
		числе с использованием новых
		информационных технологий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	8 Семестр						
1	Первый раздел	1-8	10/10/0		25	КИ-8	3-ПК-12.1, У-ПК-12.1,

						В-ПК-12.1,
						3-ПК-12.3,
						У-ПК-12.3,
						В-ПК-12.3,
						3-ПК-12.4,
						У-ПК-12.4,
						В-ПК-12.4
2	Второй раздел	9-15	10/10/0	25	КИ-15	3-ПК-12.1,
						У-ПК-12.1,
						В-ПК-12.1,
						3-ПК-12.3,
						У-ПК-12.3,
						В-ПК-12.3,
						3-ПК-12.4,
						У-ПК-12.4,
						В-ПК-12.4
	Итого за 8 Семестр		20/20/0	50		
	Контрольные			50	3	3-ПК-12.1,
	мероприятия за 8					У-ПК-12.1,
	Семестр					В-ПК-12.1,
						3-ПК-12.3,
						У-ПК-12.3,
						В-ПК-12.3,
						3-ПК-12.4,
						У-ПК-12.4,
						В-ПК-12.4

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	8 Семестр	20	20	0
1-8	Первый раздел	10	10	0
1 - 8	Первый раздел	Всего а	удиторных	часов
	Уравнения Максвелла.	10	10	0
	Калибровки, лоренцевская калибровка. Потенциал поля	Онлайн	I	
	как четырехмерный вектор, его релятивистская	0	0	0
	инвариантность. Векторная и скалярная компоненты поля.			
	Кулоновский потенциал.			
	Квантование поля. Понятие о фотоне данной моды.			
	Однофотонные и двухфотонные состояния. Сжатые и			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	когерентные состояния. Число фотонов и частота.			
	Гармонические осцилляторы поля. Квантование поля			
	через интегралы по путям Фейнмана.			
	Метод возмущений в применении к полю. Взаимодействие			
	зарядов и поля как возмущение. Дипольное приближение			
	и его границы применимости. Сильные и слабые			
	взаимодействия. Понятие темного атомного состояния.			
	Обобщения модели Джейнса -Каммингса и их физические			
	реализации.			
	Приближение вращающейся волны и условие его			
	применимости. Ридберговские атомы. Модель Тависа-			
	Каммингса. Темные, светлые и невидимые состояния			
	атомных ансамблей. Двух-уровневые и многоуровневые			
	атомы. Ансамблевые осцилляции Раби.			
	Оптическая проводимость графов в классическом и			
	квантовом случаях.			
9-15	Второй раздел	10	10	0
9 - 15	Второй раздел	Всего а	удиторных	часов
	Квантовые марковские процессы и их описание через	10	10	0
	операторы Крауса и уравнение Линдблада (основное	Онлайн	I	
	квантовое уравнение). Стабилизация квантовых состояний	0	0	0
	при декогерентности и ее виды. Роль темных состояний			
	ансамблей двух -уровневых атомов. Квантовые эффекты,			
	имеющие практическое применение, описываемые в			
	модели TCH: dephasing assisted transport и квантовое			
	бутылочное горлышко. Связь между ними. Структура			
	темных состояний в конечномерных моделях КЭД.			
	Построение и компьютерное моделирование квантовых			
	гейтов на фотонных состояниях.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (разбор домашних заданий, система контрольно-измерительных материалов, включая тесты) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-12.1	3-ПК-12.1	3, КИ-8, КИ-15
	У-ПК-12.1	3, КИ-8, КИ-15
	В-ПК-12.1	3, КИ-8, КИ-15
ПК-12.3	3-ПК-12.3	3, КИ-8, КИ-15
	У-ПК-12.3	3, КИ-8, КИ-15
	В-ПК-12.3	3, КИ-8, КИ-15
ПК-12.4	3-ПК-12.4	3, КИ-8, КИ-15
	У-ПК-12.4	3, КИ-8, КИ-15
	В-ПК-12.4	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84]	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 –	F	Оценка «неудовлетворительно»

«неудовлетворительно»	выставляется студенту, который не знает
	значительной части программного
	материала, допускает существенные
	ошибки. Как правило, оценка
	«неудовлетворительно» ставится
	студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

1. If H22 Handbook of theoretical and computational nanotechnology Vol.3 Quantum and molecular computing, quantum simulations, , Stevenson Ranch: American scientific publ., 2006

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Для успешного усвоения курса необходимо присутсвовать на всех лекционных занятиях, выполнять домашнее задание и сдать итоговую работу.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Общие положения.

- 1. Целью лекционных занятий по данному курсу является овладение необходимыми теоретическими знаниями об экспериментальном моделировании квантовых систем.
- 2. Главной целью практических занятий является закрепление полученных на лекциях знаний и умений, это достигается путем выполнения практических самостоятельных работ и совместных практических занятий.

Автор(ы):

Ляхова Яна Сергеевна