Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

411 ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ ОФИСА ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ (M)

ОДОБРЕНО УМС ТФ НИЯУ МИФИ

Протокол № 6

от 23.12.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

РАСЧЕТЫ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Направление подготовки (специальность)

[1] 13.03.02 Электроэнергетика и электротехника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	2	72	30	30	0		12	0	3
Итого	2	72	30	30	0	0	12	0	

АННОТАЦИЯ

Курс является частью фундаментального цикла основных разделов теоретической физики, изучаемых в бакалавриате. Курс построен на основе классического учебника Л.Д. Ландау и Е.М. Лифшица и включает изложение теории классического электромагнитного поля. Полная, логически связанная теория электромагнитного поля включает в себя специальную теорию относительности, поэтому последняя взята в качестве основы изложения. Уровень и объем материала рассчитаны на подготовку специалистов, занимающихся исследовательской работой в современной экспериментальной и теоретической физике.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель курса является ознакомление студентов с основными понятиями и принципами теории классического электромагнитного поля и ее математическим аппаратом. Освоив аппарат классической теории поля, студенты будут способны применять его к исследованию электромагнитных явлений в вакууме. Овладение курсом классической электродинамики в предлагаемом объеме необходимо для изучения всех последующих курсов теоретической физики, включая квантовую механику, квантовую электродинамику, электродинамику сплошных сред и общей теории относительности.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Знания, полученные при изучении курса классической электродинамики, необходимы студентам для освоения последующих курсов теоретической физики: квантовой механики, статистической физики, релятивистской квантовой механики, теоретической физики твердого тела, макроскопической электродинамики. Кроме того, знание классической электродинамики совершенно необходимо при освоении многих специализированных дисциплин по теоретической и экспериментальной физике, изучаемых студентами старших курсов.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС,	
		анализ опыта)	
	эксплуатационный		

Осуществление процессов производства, передачи, распределения, преобразования, применения и управления потоками электрической энергии; разработка, изготовление и контроль качества элементов, аппаратов, устройств, систем и их компонентов, реализующих вышеперечисленные процессы.

электрические станции и подстанции; электроэнергетические системы и сети: системы электроснабжения городов, промышленных предприятий, установки высокого напряжения различного назначения, электроизоляционные материалы, конструкции и средства их диагностики, системы защиты от молнии и перенапряжений, средства обеспечения электромагнитной совместимости оборудования, высоковольтные электротехнологии; релейная защита и автоматизация электроэнергетических систем; электрические машины, трансформаторы, электромеханические комплексы и системы, включая их управление и регулирование; электрические и электронные аппараты, комплексы и системы электромеханических и электронных аппаратов, автоматические устройства и системы управления потоками энергии; электромагнитные системы и устройства механизмов, технологических установок и электротехнических изделий, первичных

ПК-4 [1] - Способен соблюдать и оценивать параметры пусковых режимов оборудования с обеспечением своевременного и безопасного включения его в работу

Основание: Профессиональный стандарт: 20.012

3-ПК-4[1] - Знать: главные схемы и схемы собственных нужд электростанции, способов обеспечения нормальных режимов работы оборудования и предотвращения и/или ликвидации ненормальных и аварийных режимов; У-ПК-4[1] - Уметь: выполнять требования нормативнотехнической документации, организовывать и контролировать процесс выполнения работ подчиненным оперативным персоналом смены цеха при вводе в работу турбогенераторов, трансформаторов, автотрансформаторов и шунтирующих реакторов; В-ПК-4[1] - Владеть: навыками работы с современными системами управления, сбора и передачи данных, постоянного мониторинга состояния оборудования, параметров его режима работы и их анализа

преобразователей систем измерений, контроля и управления производственными процессами; электрическая изоляция электроэнергетических и электротехнических устройств, кабельные изделия и провода, электрические конденсаторы, материалы и системы электрической изоляции электрических машин, трансформаторов, кабелей, электрических конденсаторов; электрический привод и автоматика механизмов и технологических комплексов в различных отраслях; преобразовательные устройства, электроприводы энергетических, технологических и вспомогательных установок, их систем автоматизации, контроля и диагностики; электрическое хозяйство и сети предприятий, организаций и учреждений; электрооборудование низкого и высокого напряжения; потенциально опасные технологические процессы и производства; методы и средства защиты человека, промышленных объектов и среды

обитания от	
антропогенног	0
воздействия.	

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал лисциплин
Воспитания Профессиональное воспитание	Создание условий, обеспечивающих, формирование чувства личной ответственности за научнотехнологическое развитие России, за результаты исследований и их последствия (В17)	1. Использование воспитательного потенциала дисциплин профессионального модуля для формирования чувства личной ответственности за достижение лидерства России в ведущих научно-технических секторах и фундаментальных исследованиях, обеспечивающих ее экономическое развитие и внешнюю безопасность, посредством контекстного обучения, обсуждения социальной и практической значимости результатов научных исследований и технологических разработок. 2. Использование воспитательного потенциала дисциплин профессионального модуля для формирования социальной ответственности ученого за результаты исследований и их последствия, развития исследовательских качеств посредством выполнения учебноисследовательских заданий, ориентированных на изучение и проверку научных фактов, критический анализ публикаций в профессиональной области, вовлечения в реальные междисциплинарные научно-
Профессиональное воспитание	Создание условий, обеспечивающих, формирование ответственности за профессиональный выбор, профессиональное развитие и профессиональные решения (В18)	исследовательские проекты. Использование воспитательного потенциала дисциплин профессионального модуля для формирования у студентов ответственности за свое профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых

Профессиональное
воспитание

Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)

- информационных технологий.

 1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для:
- формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные
- формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесел:
- формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий.

Профессиональное воспитание

Создание условий, обеспечивающих, формирование культуры ядерной безопасности (B24)

1.Использование воспитательного потенциала блока профессиональных дисциплин для формирования чувства личной ответственности за соблюдение ядерной и радиационной безопасности, а также соблюдение государственных и коммерческих тайн. 2.Использование воспитательного потенциала содержания учебных дисциплин «Актуальные проблемы эксплуатации АЭС», «Основы экологической безопасности в ядерной энергетике», «Системы

радиационного контроля» для формирование личной ответственности за соблюдение экологической и радиационной безопасности посредством изучения основополагающих документов по культуре ядерной безопасности, разработанных МАГАТЭ и российскими регулирующими органами, норм и правил обращения с радиоактивными отходами и ядерными материалами. 3. Использование воспитательного потенциала учебных дисциплин «Контроль и диагностика ядерных энергетических установок», «Надежность оборудования атомных реакторов и управление риском», «Безопасность ядерного топливного цикла», «Ядерные технологии и экология топливного цикла» для формирования личной ответственности за соблюдение и обеспечение кибербезопасности и информационной безопасности объектов атомной отрасли через изучение вопросов организации информационной безопасности на объектах атомной отрасли, основных принципов построения системы АСУТП ядерных объектов, методов защиты и хранения информации, принципов построения глубокоэшелонированной и гибкой системы безопасности ядернофизических объектов. 4. Использование воспитательного потенциала содержания блока дисциплин «Экология», «Системы радиационного контроля», «Основы экологической безопасности в ядерной энергетике» для формирования ответственной экологической позиции посредством изучения вопросов обеспечения такого уровня безопасности АЭС, при котором воздействие на окружающую среду, обеспечивает сохранение природных систем, поддержание их целостности и жизнеобеспечивающих функций,

через рассмотрение вопросов
радиационного контроля при
захоронении и переработки ядерных
отходов, вопросов замыкания
ядерного топливного цикла.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	6 Семестр	1.0	4 7 /4 7 /0			GY4.0	D 7774
2	Первый раздел Второй раздел	9-15	15/15/0 15/15/0		25	СК-8 КИ-15	3-ПК- 4, У- ПК-4, В- ПК-4 3-ПК-
							4, У- ПК-4, В- ПК-4
	Итого за 6 Семестр		30/30/0		50		D 774
	Контрольные мероприятия за 6 Семестр				50	3	3-ПК- 4, У- ПК-4, В- ПК-4

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
СК	Семестровый контроль
КИ	Контроль по итогам

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,	
И		час.	, час.	час.	
	6 Семестр	30	30	0	
1-8	Первый раздел	15	15	0	
	Интервал между событиями. Световой конус.	Всего аудиторных часов			
	Собственное время. Геометрическая интерпретация	0	0	0	
	преобразования Лоренца. Четырехмерные векторы,	Онлайн	I		
	тензоры. Четырехмерные скорость и ускорение.	0	0	0	
	Вводится понятие интервала, обсуждается его				
	геометрический и физический смысл. Показывается				
	важное свойство квадрата интервала - его инвариантность				
	относительно преобразований системы координат.				
	Рассматривается двумерная диаграмма как способ				
	наглядного представления точек-событий и их мировых				
	линий. Вводится понятие собственного времени.				
	Развивается математический аппарат четырёх-векторов и				
	тензорного исчисления, необходимый для понимания курса				
	и решения задач. Действие и функция Лагранжа свободной частицы в	Распа			
	теории относительности. Энергия, импульс, момент	0	удиторных 0	0	
	импульса. 4-импульс. Кинематика распадов и	Онлайн		10	
	столкновений.	0	0	0	
	Объясняются принципы построения лагранжиана	U	0	U	
	физических систем на примере свободной релятивистской				
	частицы. Вводятся понятие 4-импульса, объединяющее в				
	себе полную энергию и трёхмерный импульс. Изучается				
	метод диаграммного представления процессов распада и				
	столкновения частиц в СТО.				
	Заряд в электромагнитном поле. Четырехмерный	Всего а	удиторных	часов	
	потенциал поля. Функция Лагранжа, обобщенный	0	0	0	
	импульс и функция Гамильтона. Уравнение движения	Онлайн	· ·	1	
	заряда. Напряженности электрического и магнитного	0	0	0	
	полей.				
	Исследуется задача о движении заряженной частицы в				
	электромагнитном поле. На её примере демонстрируется				
	объединение скалярного и векторного потенциалов в				
	единый 4-потенциал. Строится функция Лагранжа				
	рассматриваемой физической системы, её обобщённый				
	импульс и функция Гамильтона. Выводится уравнение				
	движения заряда. Особое внимание уделяется понятиям				
	напряжённости электрического и магнитного полей,				
	получаемых из скалярного и векторного потенциалов				
	соответственно.				
	Тензор электромагнитного поля. Калибровочная	Всего а	удиторных	часов	
	инвариантность. Преобразование Лоренца для поля.	0	0	0	
	Инварианты поля.	Онлайн	I		
	Вводится важное понятие теории поля - тензор	0	0	0	

	эффекты СТО, как лоренцево сокращение и замедление.			
	преобразованием лоренца. Гасематриваются такие		1	
	преобразованием Лоренца. Рассматриваются такие			
	относительности Эйнштейна, в том числе с		0	0
	Знакомство с основами Специальной теории	0	0	0
	Сложение скоростей. Аберрация.	Онлай		
	Сокращение масштабов, замедление времени.	15	15	0
1 - 8	Принцип относительности. Преобразование Лоренца.	Всего	аудиторі	ных часов
	момента.			
	токов, в рамках которой вводится понятия магнитного			
	магнитного поля на больших расстояниях от системы			
	Особое внимание уделяется задаче об определении			
	рамках которой выводится закон Био-Савара-Лапласа.			
	Рассматривается задача о постоянном магнитном поле, в	0	0	0
	токов. Магнитный момент.	Онлай	 і́н	1
	Магнитное поле на больших расстояниях от системы	0	0	0
	Постоянное магнитное поле. Закон Био-Савара.	Всего	аудиторі	ных часов
	вводятся понятия дипольного и квадрупольного моментов.			
	расстояниях от системы зарядов, в рамках которой			
	задача об определении электрического поля на больших			
	случай уравнений Максвелла. Отдельно рассматривается			
	Кулона. Выводится уравнение Пуассона как частный			
	поле, в рамках которой выводится известный закон			
	внимание уделяется задаче о постоянном электрическом			
	Максвелла к описанию электромагнитных полей. Особое			
	Изучаются конкретные примеры применения уравнений			
	квадрупольный моменты.			
	расстояниях от системы зарядов. Дипольный и	0	0	0
	электростатического поля. Поле на больших	Онлай	· ÍН	
	Уравнение Пуассона и его решение. Энергия	0	0	0
	Постоянное электрическое поле. Закон Кулона.	Всего	аудиторі	ных часов
	поля, как плотность энергии и плотность потока энергии.			
	рассматриваются такие характеристики электромагнитного			
	Максвелла путём варьирования действия. Отдельно			
	электромагнитного поля. Проводится вывод уравнений			
	и тока записывается уравнение непрерывности и действия			
	объединить в вектор 4-тока. В терминах плотностей заряда			
	трёхмерного тока, которые можно естественным образом			
	Вводятся понятие плотности заряда и плотности			
	потока энергии.	0	0	0
	Уравнения Максвелла. Плотность энергии и плотность	Онлаї		
	непрерывности. Действие для электромагнитного поля.	0	0	0
	Плотность заряда, плотность тока. Уравнение			ных часов
	преобразования.	D.		
	которого получаются инварианты поля относительно этого			
	уделяется преобразованию Лоренца для поля, на основании			
	калибровочных преобразований. Особое внимание			
	электромагнитного поля относительно группы			
	свойства инвариантности напряжённости			
	соответствующие координатные оси. Демонстрируется			
	напряжённостей электрического и магнитного полей на			
	Компонентами тензора являются проекции векторов			
			I	

	Галилеево преобразование скоростей при переходе в			
	новую инерциальную систему отсчёта обобщается на			
	случай релятивистской механики с помощью			
	преобразований Лоренца. Рассматривается релятивистский			
0.45	эффект - аберрация.	1.5	1.5	-
9-15	Второй раздел	15	15	0
	Запаздывающие потенциалы. Их асимптотика на		аудиторн	
	больших расстояниях Волновая зона. Излучение	0	0	0
	электромагнитных волн. Интенсивность излучения.	Онлай		
	Рассматриваются уравнения для потенциалов в калибровке	0	0	0
	Лоренца, проводится решение методом функции Грина. С			
	помощью преобразования Фурье выводится			
	запаздывающая функция Грина, порождающая полные			
	решения для так называемых запаздывающих потенциалов.			
	Проводится анализ свойств и асимптотического поведения			
	полученных зависимостей. Вводится понятие волновой			
	зоны и интенсивности излучения. Рассматривается явление			
	излучения электромагнитных волн.			
	Дипольное излучение. Квадрупольное и магнито-	Всего	аудиторн	ых часов
	дипольное излучение. Спектральное распределение	0	0	0
	интенсивности излучения.	Онлай	Н	
	Рассматривается поведение запаздывающих потенциалов	0	0	0
	на больших расстояниях от системы зарядов и токов. С			
	помощью метода Фурье проводится спектральное			
	разложение запаздывающих потенциалов и порождаемых			
	ими характеристик электромагнитного поля и излучения, в			
	том числе интенсивности излучения.			
	Сила радиационного трения в нерелятивистском	Всего	аудиторн	ых часов
	случае. Условия применимости классической	0	0	0
	электродинамики. Рассеяние электромагнитных волн.	Онлай	Н	
	Рассматривается явление торможения излучением,	0	0	0
	выводится выражение для силы радиационного трения.			
	Проводится анализ условий применимости полученных			
	результатов, определяется классический радиус электрона.			
	Рассматривается задача о рассеянии электромагнитных			
	волн, вводится угловое распределение рассеянной энергии.			
	Интенсивность излучения быстро движущегося заряда.	Всего	аудиторн	ых часов
	Сила радиационного трения в ультрарелятивистском	0	0	0
	случае.	Онлай	Н	
	Рассматривается релятивистское обобщение полученных	0	0	0
	ранее результатов: для интенсивности быстро			
	движущегося заряда и потерь энергии на излучение			
	релятивистской частицей.			
	Потенциалы Лиенара-Вихерта и их асимптотика на	Всего	аудиторн	ых часов
	больших расстояниях. Угловое распределение	0	0	0
	излучения релятивистской частицы. Излучение малых	Онлай	Н	
	частот при столкновениях.	0	0	0
	На основе известного решения для запаздывающих			
	потенциалов строятся потенциалы Лиенара-Вихерта,			
	потенциалов строятся потенциалы Лиенара-Вихерта, рассматривается их асимптотика на больших расстояниях			
	потенциалов строятся потенциалы Лиенара-Вихерта,			

	релятивистской частиц. Рассматриваются особенности			
	излучения малых частот при столкновениях заряженных			
	частиц.			
	Тензор энергии-импульса электромагнитного поля и	Всего а	удиторных	часов
	системы точечных частиц. Гамильтонова	0	0	0
	формулировка электродинамики. Разложение	Онлайн	I	
	поперечного поля по плоским волнам. Разложение	0	0	0
	функции Гамильтона на ось			
	Записывается тензор энергии-импульса системы точечных			
	частиц как первый шаг к введению в рассмотрение			
	квантовых эффектов в теории поля. Даются основы			
	гамильтоновой формулировки электродинамики. В рамках			
	этого подхода проводится разложение поперечного поля по			
	плоским волнам и разложение функции Гамильтона на			
	осцилляторы.			
9 - 15	Уравнения для потенциалов. Волновое уравнение.	Всего а	удиторных	часов
	Плоские волны. Монохроматическая плоская волна.	15	15	0
	Поляризация.	Онлайн	I	
	Вводятся понятия скалярного и векторного потенциалов	0	0	0
	для определения напряжённостей соответствующих полей.			
	Уравнения для нахождения потенциалов выводится как			
	следствие уравнений Максвелла. Рассматривается свойство			
	калибровочной инвариантности, а также различные			
	калибровки потенциалов. Изучаются важные решения			
	уравнений для потенциалов: электромагнитные волны и, в			
	частности, плоские и монохроматические плоские волны,			
	для которых возможно введение понятия поляризации.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование	
чение		
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В курсе используются традиционные образовательные технологии: лекции, семинарские занятия с разбором задач и примеров, текущие домашние задания и большие домашние задания.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(КП 1)	
ПК-4	3-ПК-4	3, СК-8, КИ-15	
	У-ПК-4	3, СК-8, КИ-15	
	В-ПК-4	3, СК-8, КИ-15	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74	4 – «хорошо»	D	материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без

	дополнительных занятий по
	соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Аудиторные занятия являются частью общего курса. Поэтому необходимо помнить, что аудиторные занятия дополняются самостоятельной работой студента. При самостоятельной работе следует использовать рекомендуемую литературу, а также ресурсы сети Интернет. Для более успешного освоения материала курса целесообразно перед каждым аудиторным занятием прочитать материал из рекомендованной литературы и из интернет-источников.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Аудиторные занятия являются частью общего курса. Поэтому необходимо помнить, что аудиторные занятия дополняются самостоятельной работой студента. При самостоятельной работе следует использовать рекомендованную литературу, а также ресурсы сети Интернет. Для более результативного проведения занятий целесообразно провести краткий опрос студентов перед началом занятий, обудив материалы предыдущего занятия и тему предстоящего занятия.

Итоговая оценка по промежуточной аттестации в первую очередь зависит от того, насколько активно студент участвовал в занятиях, участвовал в обсуждении полученных результатов, а также от ответов на дополнительные вопросы.

Автор(ы):

Толоконский Андрей Олегович, к.т.н., доцент