Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

АСИМПТОТИЧЕСКИЕ МЕТОДЫ

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	4	144	40	24	0		35	0	Э
Итого	4	144	40	24	0	0	35	0	

АННОТАЦИЯ

Содержание курса - ознакомление с современным состоянием асимптотических методов, предназначенных для аналитического вычисления интегралов, решения полиномиальных и трансцендентных уравнений с малым параметром, решения краевых задач с малым и большим параметром, анализа нелинейных колебаний. При асимптотическом решении алгебраических уравнений и задач с краевых задач с малым параметром акцент делается на сингулярные задачи. В асимптотических методах вычисления интегралов наибольшее внимание уделяется методу перевала (методу наискорейшего спуска) в его различных вариантах. Курс сопровождается решением большого количества задач.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель преподавания данной дисциплины состоит в изложении современных и классических методов асимптотических вычислений интегралов, асимптотического решения дифференциальных уравнений с малым и большим параметром (задачи с погранслоем и родственные им), исследование методами теории возмущений нелинейных колебаний (уравнение Дюффинга).

Основными задачами освоения дисциплины являются:

- получение и закрепление теоретических и практических знаний в области асимптотических методов решения различных задач математической физики;
- приобретение навыков для практического применения полученных знаний в области построений асимптотических решений задач математической физики и асимптотической оценке интегралов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Освоение данной дисциплины базируется на изучении студентом дисциплин: Математики, Общей физики, Механики. Для успешного освоения программы данной дисциплины требуется повторение изученных материалов по следующим дисциплинам (в скобках указываются содержательные разделы, полезные для изучения данной дисциплины):

«Математический анализ» (формула Тейлора с остаточным членом в форме Пеано, разложение в ряд Тэйлора различных элементарных функций, интегральное исчисление функции одной переменной, понятие определенного и неопределенного интеграла);

«Линейная алгебра» (системы линейных алгебраических уравнений (СЛАУ), критерий Кронекера-Капелли совместности СЛАУ, однородные СЛАУ, критерий существования ненулевого решения однородной СЛАУ);

«Обыкновенные дифференциальные уравнения» (ОДУ с разделяю-щимися переменными, однородные ОДУ, линейные ОДУ первого порядка, уравнения в полных дифференциалах, линейные ОДУ высших порядков, линейные однородные ОДУ, свойства их решений, фундаментальная система решений ЛОДУ, структура общего решения ЛОДУ, ЛОДУ с постоянными коэффициентами, структура общего решения ЛНДУ, метод вариации произвольных постоянных, ЛНДУ с постоянными коэффициентами и специальной правой частью).

«Теория функций комплексного переменного» (аналитические функции, условия Коши-Римана, оператор Лапласа, гармонические функции, связь аналитических функций с гармоническими,, лемма Жордана, теория вычетов).

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

знаний) профессиональ Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	
профессиональной деятельности (ЗПД)	кинкне атрации	профессиональной компетенции;	индикатора
деятельности (ЗПД)		Основание	достижения
			профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
	***************************************	опыта) педовательский	
Vyvoomyo n mannoyayyyy			2 ПИ 15 2[1]
Участие в проведении	Модели, методы и	ПК-15.2 [1] - Способен	3-ПК-15.2[1] -
теоретических	средства	применять основные	основные физические
исследований,	фундаментальных и	законы	явления из области
построении	прикладных	естественнонаучных	генерации и
физических,	исследований и	дисциплин в	распространения
математических и	разработок в	профессиональной	частиц и полей с
компьютерных	области математики,	деятельности, методы	классическими и
моделей изучаемых	физики и других	теоретического и	квантовыми
процессов и явлений,	естественных и	математического	свойствами, включая
в проведении	социально -	исследования в физике	закрученное
аналитических	экономических наук	метаматериалов,	излучение, квантовые
исследований в	по профилям	фотонике и физике	явления при генерации
предметной области	предметной	терагерцового	квантов излучения,
по профилю	деятельности в	излучения	пучки Эйри,
специализации	науке, технике,		качественные
	технологиях, а	Основание:	особенности описания
	также в сферах	Профессиональный	явлений на уровне
	наукоемкого	стандарт: 40.011	микроскопическом,
	производства,		мезоскопическом и
	управления и		макроскопическом,
	бизнеса		понимать взаимосвязь
			между этими
			уровнями описания;
			У-ПК-15.2[1] -
			применять методы
			усреднения при
			переходе от
			микроскопического к

	мезоскопическому и
	макроскопическому
	уровням;
	В-ПК-15.2[1] -
	навыками применения
	в профессиональной
	деятельности
	основных законов
	естественнонаучных
	дисциплин, методов
	теоретического и
	математического
	анализа в физике
	метаматериалов,
	фотонике и физике
	терагерцового
	излучения

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое

мышление и основы научной коммуникации", "Введение в специальность", "Научно-исследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных
студентами занятий и регулярных
бесед;
- формирования критического
мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

	т изделы у теоной диец		, ,	,	1 1	1	
№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Алгебраические уравнения, интегралы, дифференциальные уравнения с малым параметром	1-8	20/12/0		25	T-8	3-ПК-15.2, У-ПК-15.2, В-ПК-15.2
2	Дифференциальные уравнения с большим параметром, уравнения в частных производных и интегральные преобразования	9-16	20/12/0		25	БД3-16	3-ПК-15.2, У-ПК-15.2, В-ПК-15.2
	Итого за 7 Семестр		40/24/0		50		
	Контрольные мероприятия за 7				50	Э	3-ПК-15.2, У-ПК-15.2,

естр			В-ПК-15.2

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
БДЗ	Большое домашнее задание
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	7 Семестр	40	24	0
1-8	Алгебраические уравнения, интегралы,	20	12	0
	дифференциальные уравнения с малым параметром			
1	Основные понятия асимптотических методов	Всего а	аудиторных	часов
	Асимптотические ряды. Понятие асимптотической	4	2	0
	сходимости.	Онлайі	H	
	Методы теории возмущений для решения кубических и	0	0	0
	алгебраических уравнений высших порядков, а также			
	трансцендентных уравнений.			
2	Методы вычисления интегралов		аудиторных	
	Приближенные и асимптотические методы вычисления	4	2	0
	определенных и неопределенных интегралов. Разложение	Онлайі	H	
	подинтегральной функции, интегрирование по частям.	0	0	0
3 - 4	Специальные методы вычисления интегралов	Всего аудиторных часов		
	Метод Лапласа, метод стационарной фазы для	2	2	0
	асимптотического вычисления интегралов.	Онлайн		
		0	0	0
5	Метод перевала	Всего а	аудиторных	часов
	Метод перевала (метод наискорейшего спуска) для	2	2	0
	асимптотического вычисления интегралов.	Онлайі	H	
		0	0	0
6	Дифференциальные уравнения с малым параметром	Всего а	аудиторных	часов
	Приближенные методы решения дифференциальных	2	2	0
	уравнений с малым параметром нелинейности. Прямое	Онлайі	H	
	разложение. Анализ точного решения уравнения	0	0	0
	Дюффинга.			
7	Специальные методы решения дифференциальных	Всего а	аудиторных	часов
	уравнений с малым параметром	4	1	0
	Методика Линштедта-Пуанкаре. Метод перенормировки.	Онлайі	Н	
	Метод многих масштабов.	0	0	0
8	Специальные методы решения дифференциальных	Всего а	аудиторных	часов
	уравнений с малым параметром	2	1	0
	Метод вариации произвольных постоянных. Метод	Онлайі	H	•

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	усреднения.	0	0	0
9-16	Дифференциальные уравнения с большим	20	12	0
	параметром, уравнения в частных производных и			
	интегральные преобразования			
9 - 10	Дифференциальные уравнения с большим параметром	Всего	о аудиторі	ных часов
	Дифференциальные уравнения с большим параметром.	4	2	0
	Асимптотическое решение линейных дифференциальных	Онла	йн	
	уравнений. ВКБ-приближение. Задачи на собственные значения.	0	0	0
11	Уравнения с точкой поворота	Всего	о аудиторі	ных часов
	Уравнения с точкой поворота. Преобразование Лангера.	4	2	0
	Метод эталонных интегралов. Эталонное уравнение Эйри	Онла	йн	
	вблизи точки поворота. Функции Эйри. Сращивание ВКБ -	0	0	0
	решения с решением, полученным в окрестности точки поворота.			
12	Задачи с пограничным слоем	Всего	о аудиторі	ных часов
	Задачи с пограничным слоем. Метод многих масштабов.	2	2	0
		Онла	йн	1
		0	0	0
13	Особые случаи задач с пограничным слоем	Всего	о аудиторі	ных часов
	Метод сращиваемых асимптотических разложений	6	2	0
	построения решения задач с пограничным слоем. Задачи с	Онла	йн	
	двумя пограничными слоями, в том числе и с	0	0	0
	переменными коэффициентами.			
14 - 15	Краевые задачи с пограничным слоем		о аудиторі	ных часов
	Краевые задачи с составным пограничным слоем,	2	2	0
	расположенным на краю интервала. Краевые задачи с	Онла	йн	
	пограничным слоем, расположенным внутри интервала.	0	0	0
	Нелинейные задачи с погранслоем.			
16	Интегральные преобразования		о аудиторі	ных часов
	Применение интегральных преобразований при решении	2	2	0
	задач математической физики.	Онла		
	Применение преобразования Фурье и родственных ему	0	0	0
	(преобразование Лапласа, Ханкеля) для решения задач			
	теории колебаний и волн, теплопроводности.			
	Асимптотическое поведение решения.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

Недели	Темы занятий / Содержание
	7 Семестр
1	Решение алгебраических уравнений
	Методы теории возмущений для решения кубических и алгебраических уравнений
	высших порядков.
2	Методы вычисления интегралов
	Приближенные и асимптотические методы вычисления определенных и
	неопределенных интегралов. Разложение подинтегральной функции, интегрирование
	по частям.
3 - 4	Специальные методы вычисления интегралов
	Метод Лапласа, метод стационарной фазы для асимптотического вычисления
	интегралов.
5	Метод перевала
	Метод перевала (метод наискорейшего спуска) для асимптотического вычисления
	интегралов.
6 - 8	Дифференциальные уравнения с малым параметром
	Приближенные методы решения дифференциальных уравнений с малым параметром
	нелинейности.
7	При реализация программы используются следующие технологии:
	Методика Линштедта-Пуанкаре. Метод перенормировки. Метод многих масштабов.
8	Специальные методы решения дифференциальных уравнений с малым
	параметром
	Метод вариации произвольных постоянных. Метод усреднения.
9 - 10	Дифференциальные уравнения с большим параметром
	ВКБ-приближение. Задачи на собственные значения
11	Уравнения с точкой поворота
	Сращивание ВКБ - решения с решением, полученным в окрестности точки поворота.
12	Задачи с пограничным слоем
	Задачи с пограничным слоем. Метод многих масштабов.
13	Специальные методы для задач с пограничным слоем
	Метод сращиваемых асимптотических разложений построения решения задач с
	пограничным слоем.
	Задачи с двумя пограничными слоями, в том числе и с переменными
11 15	коэффициентами.
14 - 15	Краевые задачи с пограничным слоем
	Краевые задачи с составным пограничным слоем, расположенным на краю интервала.
1.0	Краевые задачи с пограничным слоем, расположенным внутри интервала.
16	Интегральные преобразования
	Применение интегральных преобразований при решении задач математической
	физики. Применение преобразования Фурье и родственных ему (преобразование
	Лапласа, Ханкеля) для решения задач теории колебаний и волн, теплопроводности.
	Асимптотическое поведение решения.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализация программы используются следующие технологии:

- лекции по курсу традиционного типа, на которых применяется компьютерный проектор для иллюстраций сложных устройств, систем и алгоритмов;
 - самостоятельная работа студентов
 - практические занятия.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-15.2	3-ПК-15.2	Э, Т-8, БДЗ-16
	У-ПК-15.2	Э, Т-8, БДЗ-16
	В-ПК-15.2	Э, Т-8, БДЗ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74		D	по существу излагает его, не допуская
			существенных неточностей в ответе на
			вопрос.
65-69	<u>'</u>		Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 93 Курс дифференциального и интегрального исчисления: в 3-х тт. Т. 2 Курс дифференциального и интегрального исчисления, , : , 2022
- 2. ЭИ Т 80 Математический анализ. Функция одного переменного: учебное пособие для вузов, Трухан А. А., Санкт-Петербург: Лань, 2020
- 3. 517 С18 Методы решения линейных дифференциальных уравнений и систем с постоянными коэффициентами: , Сандаков Е.Б., Гордеев Ю.Н., Москва: НИЯУ МИФИ, 2013

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К78 Кратные и криволинейные интегралы: учебно-методическое пособие, Садекова Е.Х. [и др.], Москва: НИЯУ МИФИ, 2013
- 2. 517 H62 Лекции по уравнениям и методам математической физики : , Никифоров А.Ф., Долгопрудный: Интеллект, 2009
- 3. ЭИ Г85 Математический анализ 2: курс лекций, Гришин С.А., Москва: МИФИ, 2008

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Особенности курса:

Целью освоения учебной дисциплины является изучение современных и классических методов асимптотических вычислений интегралов, асимптотического решения дифференциальных уравнений с малым и большим параметром (задачи с погранслоем и

родственные им), исследование методами теории возмущений нелинейных колебаний (уравнение Дюффинга).

Основными целями освоения дисциплины являются:

- получение и закрепление теоретических и практических знаний в области асимптотических методов решения различных задач математической физики;
- приобретение навыков для практического применения полученных знаний в области построений асимптотических решений задач математической физики и асимптотической оценке интегралов.

2. Структура лекционного курса

Курс разделен на две основные части: Порядка одной трети занятий содержит новый теоретический материал, а другие две трети - примеры решения задач.

3. Проведение семинарских занятий и выполнение самостоятельных работ

Каждое занятие разбивается на две части, в первой из которой излагается теоретический материал, а во второй рассматриваются и решаются примеры и задачи, как правило, прикладного характера. Студенты должны, используя прослушанный на лекциях материал, научиться решать конкретные прикладные задачи, связанные с применением асимптотических методов.

4. Организация контроля

Самостоятельные работы выполняются во время занятий в течение семестра. Каждому студенту выдается один из вариантов самостоятельной работы. Сданные самостоятельные работы проверяются преподавателем с выставлением оценок, учитываемых в конце семестра при проставлении итоговой оценки.

Получение положительной оценки по каждой самостоятельной работе является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра.

5. Проведение экзамена

Для допуска к экзамену необходимо выполнить с положительными оценками все проведенные в течение семестра самостоятельные работы и домашнее задание. При условии сдачи с положительными оценками всех работ студент во время сдачи экзамена отвечает на экзаменационные вопросы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Особенности курса:

Целью освоения учебной дисциплины «Асимптотические методы» является изучение современных и классических методов асимптотических вычислений интегралов, асимптотического решения дифференциальных уравнений с малым и большим параметром (задачи с погранслоем и родственные им), исследование методами теории возмущений нелинейных колебаний (уравнение Дюффинга).

Основными целями освоения дисциплины являются:

- получение и закрепление теоретических и практических знаний в области асимптотических методов решения различных задач математической физики;
- приобретение навыков для практического применения полученных знаний в области построений асимптотических решений задач математической физики и асимптотической оценке интегралов.

2. Структура лекционного курса

Курс разделен на две основные части: Порядка одной трети занятий содержит новый теоретический материал, а другие две трети - примеры решения задач.

3. Проведение семинарских занятий и выполнение самостоятельных работ

Каждое занятие разбивается на две части, в первой из которой излагается теоретический материал, а во второй рассматриваются и решаются примеры и задачи, как правило, прикладного характера. Студенты должны, используя прослушанный на лекциях материал, научиться решать конкретные прикладные задачи, связанные с применением асимптотических методов.

4. Организация контроля

Самостоятельные работы выполняются во время занятий в течение семестра. Каждому студенту выдается один из вариантов самостоятельной работы. Сданные самостоятельные работы проверяются преподавателем с выставлением оценок, учитываемых в конце семестра при проставлении итоговой оценки.

Получение положительной оценки по каждой самостоятельной работе является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра.

5. Проведение экзамена

Для допуска к экзамену необходимо выполнить с положительными оценками все проведенные в течение семестра самостоятельные работы и домашнее задание. При условии сдачи с положительными оценками всех работ студент во время сдачи экзамена отвечает на экзаменационные вопросы.

Автор(ы):

Ионов Андрей Михайлович