Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КОМПЬЮТЕРНЫХ СИСТЕМ И ТЕХНОЛОГИЙ

ОДОБРЕНО УМС ИИКС

Протокол № УМС-575/01-1

от 30.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ВЕРИФИКАЦИЯ И АНАЛИЗ ПРОГРАММ

Направление подготовки (специальность)

[1] 09.04.01 Информатика и вычислительная техника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	6	216	30	0	30		120	0	Э
Итого	6	216	30	0	30	0	120	0	

АННОТАЦИЯ

Формирование целостной картины существующих проблем в области информатики и вычислительной техники, их состояния и пути их решения для совершения осознанного и научно обоснованного выбора темы диссертационных исследований.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Верификация и анализ программ» являются формирование у студентов целостной картины существующих проблем в области информатики и вычислительной техники, их состояния и пути их решения для совершения осознанного и научно обоснованного выбора темы диссертационных исследований.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина "Верификация и анализ программ" относится к базовой части рабочего учебного плана.

Для успешного усвоения дисициплины необходимы компетенции, сформированные в результате изучения дисциплин бакалавриата по направлению Информатика и вычислительная технка.

Изучение данной дисицплины необходимо для выполнения НИР, прохождения практик и защиты магистерской диссертации.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

/ I I			
Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора достижения
деятельности (ЗПД)		компетенции;	профессиональной
		Основание	компетенции
		(профессиональный	
		стандарт-ПС, анализ	
		опыта)	
научно-ис	сследовательский и инн	овационный	
Разработка рабочих	Вычислительные	ПК-1 [1] - Способен	3-ПК-1[1] - Знать:
планов и программ	машины, комплексы,	применять научно	мировые тенденции
проведения научных	системы и сети.	обоснованные	развития вычислительной
исследований и	Автоматизированные	перспективные методы	техники и
технических	системы обработки	исследования и решать	информационных
разработок, подготовка	информации и	задачи на основе знания	технологий, современные
отдельных заданий для	управления.	мировых тенденций	методы научных

исполнителей. Сбор, обработка, анализ и систематизация научнотехнической информации по теме исследования, выбор методик и средств решения задачи. Разработка математических моделей исследуемых процессов и изделий. Разработка методик проектирования новых процессов и изделий. Разработка методик автоматизации принятия решений. Организация проведения экспериментов и испытаний, анализ их результатов. Подготовка научнотехнических отчетов, обзоров, публикаций по результатам выполненных исследований. Внедрение результатов научно-технических исследований в реальный сектор экономики и коммерциализации

Системы автоматизированного проектирования и информационной поддержки жизненного цикла промышленных излелий. Программное обеспечение средств вычислительной техники и автоматизированных систем (программы, программные комплексы и системы). Математическое, информационное, техническое, лингвистическое, программное, эргономическое, организационное и правовое обеспечение перечисленных систем.

развития вычислительной техники и информационных технологий с внедрением результатов исследований в реальный сектор экономики

Основание: Профессиональный стандарт: 06.014 действующее законодательство в области интеллектуальной собственности; У-ПК-1[1] - Уметь: выбирать современные информационные технологии, научно обоснованные перспективные методы исследования и программные средства, в том числе отечественного производства при решении задач профессиональной деятельности, внедрять результаты исследований в реальный сектор экономики; В-ПК-1[1] - Владеть: навыками применения научно обоснованных перспективных методов исследования и решения задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий с внедрением результатов исследований в реальный сектор экономики

исследований,

производственно-технологической

про Проектирование и применение инструментальных средств реализации программно-аппаратных проектов. Разработка методик реализации и сопровождения программных продуктов. Разработка технических заданий на проектирование программного обеспечения для

разработок.

Вычислительные машины, комплексы, системы и сети. Автоматизированные системы обработки информации и управления. Системы автоматизированного проектирования и информационной поддержки жизненного цикла промышленных изделий.

ПК-2 [1] - Способен разрабатывать модели и компоненты высокопроизводительного защищенного программно-аппаратного обеспечения и автоматизированных систем обработки информации и управления с использованием современных инструментальных средств и технологий

3-ПК-2[1] - Знать: современные информационные технологии и инструментальные средства разработки моделей и компонентов высокопроизводительного защищенного программно-аппаратного обеспечения и автоматизированных систем обработки информации и управления;

средств управления и технологического оснащения промышленного производства и их реализация с помощью средств автоматизированного проектирования. Тестирование программных продуктов и баз данных. Выбор систем обеспечения экологической безопасности производства. Проведение испытаний,

Программное обеспечение средств вычислительной техники и автоматизированных систем (программы, программные комплексы и системы). Математическое, информационное, техническое, лингвистическое, программное, эргономическое, организационное и правовое обеспечение перечисленных систем.

Основание: Профессиональный стандарт: 06.028

У-ПК-2[1] - Уметь: выбирать и применять современные информационные технологии и инструментальные средства разработки моделей и компонентов высокопроизводительного защищенного программно-аппаратного обеспечения и автоматизированных систем обработки информации и управления в соответствии с решаемыми задачами; В-ПК-2[1] - Владеть: навыками разработки моделей и компонентов высокопроизводительного защищенного программно-аппаратного обеспечения и автоматизированных систем обработки информации и управления с использованием современных инструментальных средств и технологий

внедрение и ввод в эксплуатацию разработанных программноаппаратных комплексов, баз данных, информационных систем и автоматизированных систем обработки информации и управления. Использование передовых методов оценки качества, надежности и информационной безопасности программноаппаратных комплексов, баз данных, информационных систем и автоматизированных

систем обработки информации и управления. Использование информационных сервисов для автоматизации прикладных и

информационных		
процессов предприятий		
высокотехнологических		
отраслей экономики.		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

No	Наименование			"•			
п.п	паименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	2 Семестр						
1	Информационная безопасность. Надежность программного обеспечения	1-4	15/0/0		15	КИ-4	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 2, У- ПК-2, В- ПК-2
2	Компьютерные технологии в робототехнике. Современные проблемы компьютерных сетей	5-8	0/0/15		15	КИ-8	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 2, У- ПК-2, В- ПК-2
3	Современные технологии построения распределенных вычислительных систем. Современные технологии параллельного программирования	9-12	15/0/0		15	КИ-12	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 2, У- ПК-2, В-

						ПК-2
4	Современные	13-15	0/0/15	15	КИ-15	3-ПК-
	технологии сжатия					1,
	данных					У-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						2,
						У-
						ПК-2,
						B-
						ПК-2
	Итого за 2 Семестр		30/0/30	60		
	Контрольные			40	Э	3-ПК-
	мероприятия за 2					1,
	Семестр					У-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						2,
						У-
						ПК-2,
						B-
						ПК-2

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	2 Семестр	30	0	30
1-4	Информационная безопасность. Надежность	15	0	0
	программного обеспечения			
1 - 2	Информационная безопасность	Всего а	аудиторных	часов
	Проблемы информационной безопасности. Разрушающие	10	0	0
	программные воздействия. Анализ угроз безопасности.	Онлайі	H	
	Принцип Кирхгофа. Роль стохастических методов при	0	0	0
	решении задач обеспечения секретности данных.			
	Основные принципы современной криптологии.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Проектирование систем безопасности.			
3 - 4	Надежность программного обеспечения	Всего	аудитор	ных часов
	Схемы и методики реализации систем высокой надежности	5	0	0
	и отказоустойчивости для программных и аппаратных	Онла	 йн	
	комплексов. Уровни защищенности, влияние на	0	0	0
	производительность. Методики и алгоритмы тестирования			
	сложных аппаратно-программных комплексов. Общие			
	концептуальные схемы тестирования. Создание надежного			
	и безопасного программного обеспечения. Виды			
	уязвимостей. Схемы устранения уязвимостей из			
	программного кода.			
5-8	Компьютерные технологии в робототехнике.	0	0	15
	Современные проблемы компьютерных сетей			
5 - 6	Компьютерные технологии в робототехнике	Всего	аулитор	ных часов
	Классификация робототехнических систем (РТС).	0	0	5
	Примеры РТС и их функционал. Основные технологии	Онла		
	робототехники. Компьютерные технологии в	0	0	0
	робототехники. Проблемы и задачи робототехники: в			0
	области теории управления, в области обработки			
	изображений, в области компьютерных сетей, в области			
	интеллектуализации РТС, в области технологий			
	программирования. Факультетская научно-учебная			
	лаборатория «Робототехника»: цели, задачи, парк роботов,			
	текущие проекты.			
7 - 8	Современные проблемы компьютерных сетей	Роспо	OVILITOR	ных часов
7 - 0	Современные проолемы компьютерных сетей. Качество	0	<u>аудитор</u> 0	10
	обслуживания (QoS) и балансирование нагрузки в			10
	вычислительных сетях. Специализированные сетевые	Онла		
		0	0	0
	технологии: суперкомпьютерные сети и сети хранения			
	данных (SAN). Проблемы информационной безопасности в компьютерных сетях.			
9-12	Современные технологии построения распределенных	15	0	0
<i>)</i> -1 <i>2</i>	вычислительных систем. Современные технологии	13	0	0
	параллельного программирования			
9 - 10	Современные технологии построения распределенных	Всего	 avлитon	ных часов
) 10	вычислительных систем	5	$\frac{\sqrt{ay}}{10}$	0
	Распределенные операционные системы. Распределенные	Онла		0
	файловые системы и системы хранения. Методы	0	0	0
	построение системы и системы хранения. Методы построение систем с высокой степенью доступности.	0	0	0
	Методы построение систем, устойчивых к катастрофам.			
	Облачные вычисления.			
11 - 12	Современные технологии параллельного	Beere	 Navijuton	ных часов
11 - 12	программирования	10	$\frac{10}{10}$	0
	Области применения параллельных вычислительных	Онла		0
	систем и классы решаемых задач. Примеры. Типовые	0	ин 0	0
	математические задачи для параллельных вычислительных	0	0	١
	систем: параллельные алгоритмы решения задач линейной			
	алгебры, параллельные алгоритмы решения задач линеиной			
	(получение псевдослучайных чисел), параллельные			
	алгоритмы для распределенных баз данных. Методы оценки качества параллельных алгоритмов. Тенденции			
	годстки качества параллельных алгоритмов. Генденции	1	1	I
	развития языков и систем параллельного			

	программирования.			
13-15	Современные технологии сжатия данных	0	0	15
13 - 15	Современные технологии сжатия данных	Всего а	аудиторных	часов
	Сжатие данных (СД), как часть информационных	0	0	15
	технологий. Назначение, актуальность, области	Онлайн	I	
	применения.	0	0	0
	Обратимое и необратимое сжатие данных. Классификация			
	методов СД.			
	СД в условиях неизвестной исходной статистики данных.			
	Универсальное кодирование, как направление в обратимом			
	СД в условия неизвестной статистики.			
	За счет чего происходит сжатие. Вопросы трудоемкости			
	реализации универсального кодирования (УК).			
	Конкретные методы (УК). Графики зависимостей			
	статистической избыточности и коэффициента сжатия УК			
	от длины исходных блоков.			
	Примеры практической реализации и применения УК.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При чтении лекционного материала используется электронное сопровождение курса: справочно-иллюстративный материал воспроизводится и озвучивается в аудитории с использованием проектора и переносного компьютера в реальном времени. Электронный материал доступен студентам для использования и самостоятельного изучения на сайте кафедры по адресу http://dozen.mephi.ru.

На сайте кафедры также находится методический и справочный материал, необходимый для проведения лабораторного практикума по курсу.

Лабораторный практикум проводится по расписанию в дисплейном классе одновременно для группы студентов, работающих в интерактивном режиме. Допустимо выполнение лабораторных работ в составе локальной сети кафедры или в удаленном режиме, используя Интернет.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ПК-1	3-ПК-1	Э, КИ-4, КИ-8, КИ-12, КИ-15
	У-ПК-1	Э, КИ-4, КИ-8, КИ-12, КИ-15
	В-ПК-1	Э, КИ-4, КИ-8, КИ-12, КИ-15
ПК-2	3-ПК-2	Э, КИ-4, КИ-8, КИ-12, КИ-15
	У-ПК-2	Э, КИ-4, КИ-8, КИ-12, КИ-15
	В-ПК-2	Э, КИ-4, КИ-8, КИ-12, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74	4 – «хорошо»	D	материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает

существенные ошибки. Как правило,
оценка «неудовлетворительно»
ставится студентам, которые не могут
продолжить обучение без
дополнительных занятий по
соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ С 77 Основы тестирования и верификации программного обеспечения : учебное пособие, Санкт-Петербург: Лань, 2020
- 2. ЭИ М 91 Практикум по проектированию на языках VerilogHDL и SystemVerilog : учебное пособие для вузов, Санкт-Петербург: Лань, 2021
- 3. ЭИ А 19 Численные методы. Верификация алгоритмов решения систем со случайной структурой: учебное пособие для вузов, Москва: Юрайт, 2021

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Указания для прослушивания лекций

Перед началом занятий ознакомиться с учебным планом и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. На каждой лекции следует задавать вопросы как по материалу текущей лекции, так и по ранее прочитанным лекциям.

При изучении лекционного материала обязательно следует сопоставлять его с материалом семинарских и лабораторных занятий.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и материалами из сети Internet.

2. Указания для проведения лабораторного практикума (при его наличии)

Соблюдать требования техники безопасности, для чего прослушать необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы провести самостоятельно подготовку к работе изучив основные теоретические положения, знание которых необходимо для осмысленного выполнения работы.

В процессе выполнения работы следует постоянно общаться с преподавателем, не допуская по возможности неправильных действий.

При сдаче зачета по работе подготовить отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

4. Указания по выполнению самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы.

Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса. Дать перечень рекомендованной основной литературы и вновь появившихся литературных источников.

Перед изложением текущего лекционного материала кратко напомнить об основных выводах по материалам предыдущей лекции.

Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

Периодически освещать на лекциях наиболее важные вопросы лабораторного практикума, вызывающие у студентов затруднения.

В середине семестра (ориентировочно после 8-й лекции) обязательно провести контроль знаний студентов по материалам всех прочитанных лекций.

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Давать рекомендации студентам для подготовки к очередным лабораторным работам.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения лабораторного практикума (при его наличии)

На первом занятии рассказать о лабораторном практикуме в целом (о целях практикума, инструментальных средствах для выполнения лабораторных работ, о порядке отчета по лабораторным работам), провести инструктаж по технике безопасности при работе в лаборатории.

Для выполнения каждой лабораторной работы студентам выдавать индивидуальные задания.

При принятии отчета по каждой лабораторной работе обязательно побеседовать с каждым студентом, задавая контрольные вопросы, направленные на понимание изучаемой в лабораторной работе проблемы.

По каждой работе фиксировать факт выполнения и ответа на контрольные вопросы.

Общий зачет по практикуму должен включать все зачеты по каждой лабораторной работе в отдельности.

Задания на каждую следующую лабораторную работу студенту выдавать по мере выполнения и сдачи предыдущих работ.

Автор(ы):

Сильнов Дмитрий Сергеевич, к.т.н.

Рецензент(ы):

Чуканов В.О.