Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА ИОНИЗИРОВАННОГО ГАЗА

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	2	72	16	16	0		40	0	3
Итого	2	72	16	16	0	0	40	0	

АННОТАЦИЯ

В курсе рассматриваются вопросы физики ионизованного газа. Изучаются свойства слабоионизованной и плотной плазмы. Рассматриваются основные процессы протекающие в плазме: ионизация, рекомбинация, колебательные свойства.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью курса является:

- 1) Ознакомление студентов с основными факторами, возникающими при ионизации нейтрального газа различными механизмами ионизации.
- 2) Обучить студента анализировать и преодолевать дискриминационные факторы, влияющие на процессы высоковакуумной откачки.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Курс является важным и основополагающим в научно- исследовательской и инженерно-внедренческой работе инженера-физика. В качестве базовых знаний для усвоения дисциплины необходимы знания стандартного цикла курсов общей физики и высшей математики, умение пользоваться персональным компьютером.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследователи	ьский	
Участие в	Природные и	ПК-3 [1] - Способен	3-ПК-3[1] - Знать
проведении	социальные	профессионально	основные методы
наблюдений и	явления и	работать с	исследований,
измерений,	процессы	исследовательским и	принципы работы
выполнении		испытательным	приборов и установок в
эксперимента и		оборудованием,	избранной предметной
обработке данных с		приборами и	области;

использованием современных компьютерных технологий	инновационный;	установками в избранной предметной области в соответствии с целями программы специализированной подготовки магистра Основание: Профессиональный стандарт: 40.011	У-ПК-3[1] - Уметь выбирать необходимые технические средства для проведения экспериментальных исследований в избранной предметной области, обрабатывать полученные экспериментальные результаты; В-ПК-3[1] - Владеть навыками работы с исследовательским и испытательным оборудованием, приборами и установками в избранной предметной области
Участие в модернизации существующих, разработке и внедрении новых методов контроля качества материалов, производственнотехнологических процессов и готовой продукции в сфере высоких и наукоемких технологий	инновационный, Модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса	ПК-4 [1] - Способен находить оптимальные решения при создании продукции с учетом требований качества, стоимости, сроков исполнения, конкурентоспособности и безопасности жизнедеятельности Основание: Профессиональный стандарт: 40.011	3-ПК-4[1] - Знать основные методы и принципы нахождения оптимальных решений при создании продукции с учетом требований качества, стоимости, сроков исполнения, конкурентоспособности и безопасности жизнедеятельности.; У-ПК-4[1] - Уметь находить оптимальные решения при создании и освоении новой продукции и технологии, разрабатывать эффективную стратегию с учетом требований качества, стоимости, сроков исполнения, конкурентоспособности и безопасности жизнедеятельности.; В-ПК-4[1] - Владеть навыками нахождения оптимальных решений для создания и освоения новой продукции с учетом требований

, KAMPITRA I	TOMMOCTIA
	стоимости,
сроков исп	
	оспособности
и безопасн	
жизнедеят	
Проведение Природные и ПК-5 [1] - Способен 3-ПК-5[1]	
фундаментальных и социальные применять физические физически	
прикладных явления и методы теоретического теоретичес	
математических и процессы и экспериментального экспериме	
	ния, методы
исследований, математического математич	еского
направленных на анализа и анализа и	
решение моделирования для моделиров	
	экспертизы
технических и развитию, внедрению и продукции	
информационных коммерциализации постановки	
	внедрению и
технологий коммерциа	
новых нау	
Основание: технологи	
Профессиональный У-ПК-5[1]	
	физические
методы тес	оретического
и эксперим	иентального
исследован	ния, методы
математич	еского
анализа и	
моделиров	ания для
постановки	и задач по
развитию,	внедрению и
коммерция	ализации
новых нау	коемких
технологий	й;
В-ПК-5[1]	- Владеть
навыками	
теоретичес	ского и
экспериме	
исследован	ния,
математич	еского
анализа и	
моделиров	ания для
постановкі	
	внедрению и
коммерция	-
новых нау	
технологи	

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	иге	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
		Недели	Лек (сем Лабо рабо	Обязат контро. неделя)	Мак	Аттеста раздела неделя)	Инд осво
	1 Семестр						
1	Раздел 1	1-8	8/8/0		25	Зд-8	3-ПК- 3, У- ПК-3, В- ПК-3, 3-ПК- 4, У- ПК-4, В- ПК-4, 3-ПК- 5, У- ПК-5, В-
2	Раздел 2	9-16	8/8/0		25	Зд-16	ПК-5 3-ПК- 3, У- ПК-3, В- ПК-3, 3-ПК- 4, У- ПК-4, В- ПК-4, 3-ПК- 5, У- ПК-5, В-
	Итого за 1 Семестр		16/16/0		50		111()
	Контрольные мероприятия за 1 Семестр				50	3	3-ПК- 3, У- ПК-3, В- ПК-3,

			3-ПК-
			4,
			у-
			ПК-4,
			B-
			ПК-4, 3-ПК-
			3-ПК-
			5,
			У-
			ПК-5,
			B-
			ПК-5

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
3д	Задание (задача)
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	1 Семестр	16	16	0
1-8	Раздел 1	8	8	0
1	Введение.	Всего а	аудиторных	часов
	Введение. Характеристики слабоионизованной и плотной	2	2	0
	плазмы. Физические и физико-химические процессы в	Онлайі	H	
	плазме.	0	0	0
2	Газ из частиц с кулоновским взаимодействием	Всего а	аудиторных	часов
	Газ из частиц с кулоновским взаимодействием.	2	2	0
	Разреженный ионизованный газ. Плотный газ. Элементы	Онлайі	H	•
	квантовой статистики Ферми-Дирака для электронного	0	0	0
	газа. Модель по Томасу-Ферми. Вычисление			
	термодинамических функций высоконагретого плотного			
	газа методом Томас-Ферми.			
3	Свойства слабоионизованной плазмы, обусловленные	Всего а	аудиторных	часов
	заряженными частицами.	2	2	0
	Свойства слабоионизованной плазмы, обусловленные	Онлайі	H	
	заряженными частицами. Статистическая физика	0	0	0
	слабоионизованного газа. Движение заряженных частиц во			
	внешнем поле. Образование заряженных частиц в			
	слабоионизованной плазме.			
4	Процессы с участием заряженных частиц в газе		аудиторных	часов
	Процессы с участием заряженных частиц в газе. Движение	2	2	0
	ионов в газе во внешнем поле. Диффузия заряженных	Онлайі	H	

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	частиц в газе во внешнем поле. Движение электронов в	0	0	0
	газе во внешнем поле.	_		
5	Ионизационные процессы в плазме.			ных часов
	Ионизационные процессы в плазме. Основные механизмы.	0	0	0
	Ионизация невозбужденных атомов электронным ударом.	Онла		
	Возбуждение атомов из основного состояния электронным	0	0	0
	ударом. Ионизация и возбуждение атомов электронным			
	ударом. Ударные переходы между возбужденными			
	состояниями атомов. Ионизация и возбуждение ударами			
	тяжелых частиц. Ионизация излучением плазмы,			
	фотоионизация.			
6	Образование отрицательных ионов			ных часов
	Образование отрицательных ионов. Отрицательные	0	0	0
	атомарные ионы. Отрицательные молекулярные ионы.	Онла	йн	
	Механизмы образования отрицательных ионов.	0	0	0
	Механизмы разрушения отрицательных ионов.			
7	Релаксационные процессы в газах			ных часов
	Релаксационные процессы в газах. Уравнение кинетики	0	0	0
	диссоциации двухатомных молекул и время релаксации.	Онла		
	Скорости рекомбинации атомов и диссоциации	0	0	0
	двухатомных молекул. Химические реакции и метод			
	активированного комплекса. Реакция окисления азота.			
	Скорость образования азота при высоких температурах.			
8	Релаксационные процессы в плазме.	Всего	о аудитор	ных часов
	Релаксационные процессы в плазме. Электрон-электронная	0	0	0
	релаксация. Ион-ионная релаксация. Электрон-ионная	Онла	йн	
	релаксация. Перенос энергии в плазме. Колебательные	0	0	0
	процессы в плазме. Ударные волны в плазме. Поляризация			
	плазмы и возникновение электрического поля в ударной			
	волне. Лучистый теплообмен.			
9-16	Раздел 2	8	8	0
9	Диффузия электронов и ионов в газе.			ных часов
	Диффузия электронов и ионов в газе. Закон диффузии	2	2	0
	Фика и коэффициент диффузии. Связь коэффициентов	Онла	йн	
	диффузии и подвижности. Стационарное распределение	0	0	0
	пространственного заряда ионов в электростатическом			
	поле. Диффузионное расплывание облака в безграничном			
	газе. Уравнение диффузии.			
10	Диффузия и подвижность заряженных частиц в			ных часов
	магнитном поле.	2	2	0
	Диффузия и подвижность заряженных частиц в магнитном	Онла		
	поле. Коэффициенты диффузии и подвижности	0	0	0
	заряженных частиц в магнитном поле. Амбиполярная			
	диффузия. Взаимное расталкивание заряженных частиц в			
	газе.			
11	Рекомбинационные процессы в плазме.			ных часов
	Рекомбинационные процессы в плазме. Фоторекомбинация.	2	2	0
	Электрон-ионная рекомбинация при тройных	Онла		
	столкновениях (элементарная теория). Более строгая	0	0	0
	теория рекомбинации при тройных столкновениях.			
	Ионизация и рекомбинация в воздухе.	_		
12	Фоторекомбинация	Всего	о аудитор	ных часов

	Рекомбинационные процессы в плазме. Фоторекомбинация.	2	2	0
	Электрон-ионная рекомбинация при тройных	Онлайі	H .	•
	столкновениях (элементарная теория). Более строгая	0	0	0
	теория рекомбинации при тройных столкновениях.			
	Ионизация и рекомбинация в воздухе.			
13	Разлет плотного газа в вакууме.	Всего а	аудиторных	часов
	Разлет плотного газа в вакууме. Скачек уплотнения	0	0	0
	Ударные волны с замедленным возбуждением некоторых	Онлайн	H	
	степеней свободы. Диссоциация двухатомных молекул.	0	0	0
	Ионизация в одноатомном газе. Ударные волны в плазме.			
	Поляризация плазмы и возникновение электрического поля			
	в ударной волне.			
14	Нарушение термодинамического равновесия при	Всего а	аудиторных	часов
	разлете плазмы в вакууме	0	0	0
	Нарушение термодинамического равновесия при разлете	Онлайн	H	•
	плазмы в вакууме. Разлет газового облака. Эффект	0	0	0
	«закалки». Нарушение ионизационного равновесия.			
	Кинетика рекомбинации и охлаждение газа после			
	нарушения ионизационного равновесия.			
15	Конденсация паров при адиабатическом расширении	Всего а	аудиторных	часов
	газа	0	0	0
	Конденсация паров при адиабатическом расширении газа.	Онлайі	H	
	Насыщение паров и возникновение центров конденсации.	0	0	0
	Термодинамика и кинетика процесса конденсации.			
	Конденсация в облаке испаренного вещества,			
	разлетающегося в вакууме.			
16	Некоторые свойства газового разряда.	Всего а	аудиторных	часов
	Некоторые свойства газового разряда. Положительный	0	0	0
	столб разряда в диффузионном режиме. Положительный	Онлайі	H	
	столб разряда низкого давления. Условия зажигания	0	0	0
	слаботочного разряда.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	1 Семестр
1 - 2	Введение.

	Характеристики слабоионизованной и плотной плазмы. Физические и физико-химические процессы в плазме.
3 - 5	Релаксационные процессы в газах. Уравнение кинетики диссоциации двухатомных молекул и время релаксации. Скорости рекомбинации атомов и диссоциации двухатомных молекул. Химические реакции и метод активированного комплекса. Реакция окисления азота. Скорость образования азота при высоких температурах.
6 - 9	Ионизационные процессы в плазме. Основные механизмы. Ионизация невозбужденных атомов электронным ударом. Возбуждение атомов из основного состояния электронным ударом. Ионизация и возбуждение атомов электронным ударом. Ударные переходы между возбужденными состояниями атомов. Ионизация и возбуждение ударами тяжелых частиц. Ионизация излучением плазмы, фотоионизация.
10 - 11	Релаксационные процессы в плазме. Электрон-электронная релаксация. Ион-ионная релаксация. Электрон-ионная релаксация. Перенос энергии в плазме. Колебательные процессы в плазме. Ударные волны в плазме. Поляризация плазмы и возникновение электрического поля в ударной волне. Лучистый теплообмен.
12 - 13	Рекомбинационные процессы в плазме. Фоторекомбинация. Электрон-ионная рекомбинация при тройных столкновениях (элементарная теория). Более строгая теория рекомбинации при тройных столкновениях. Ионизация и рекомбинация в воздухе.
14 - 16	Пробой и нагревание газа под действием лазерного излучения. Условия развития пробоя. Поглощение лазерного луча и нагревание газа после первичного пробоя.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (компьютерные практикумы, разбор домашних заданий, система контрольно-измерительных материалов, включая тесты) а также, проведение занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(KП 1)
ПК-3	3-ПК-3	3, 3д-8, 3д-16
	У-ПК-3	3, 3д-8, 3д-16
	В-ПК-3	3, 3д-8, 3д-16
ПК-4	3-ПК-4	3, 3д-8, 3д-16
	У-ПК-4	3, 3д-8, 3д-16
	В-ПК-4	3, 3д-8, 3д-16
ПК-5	3-ПК-5	3, 3д-8, 3д-16
	У-ПК-5	3, 3д-8, 3д-16
	В-ПК-5	3, 3д-8, 3д-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
	5 — «отлично»	A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
90-100			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	4 – «хорошо»	C	студенту, если он твёрдо знает
		D	материал, грамотно и по существу
70-74			излагает его, не допуская
70-74			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 –	F	Оценка «неудовлетворительно»

«неудовлетворительно»	выставляется студенту, который не
	знает значительной части
	программного материала, допускает
	существенные ошибки. Как правило,
	оценка «неудовлетворительно»
	ставится студентам, которые не могут
	продолжить обучение без
	дополнительных занятий по
	соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Ч-49 Кинетика разреженного газа:, Санкт-Петербург: Лань, 2022
- 2. ЭИ Ж 42 Процессы переноса в многокомпонентной плазме : учебное пособие, Москва: Физматлит, 2009
- 3. ЭИ Р 62 Теория плазмы: , Санкт-Петербург: Лань, 2022

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. ЭИ К 88 Физика тлеющего разряда:, Санкт-Петербург: Лань, 2022

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Аттестация разделов представлена следующими формами контроля:

- Задание

Для выполнения Задания на выбор преподавателя студенту выдается 2-3 вопроса из списка вопросов. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-проблемы группе

(два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждой аттестации.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Аттестация разделов представлена следующими формами контроля:

– Задание

Для выполнения Задания на выбор преподавателя студенту выдается 2-3 вопроса из списка вопросов. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-проблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждой аттестации.

Автор(ы):

Сысоев Александр Алексеевич, д.ф.-м.н., профессор

Рецензент(ы):

Иванов В.П.