Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИЗБРАННЫЕ ГЛАВЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	2	72	16	16	0		40	0	3
Итого	2	72	16	16	0	0	40	0	

АННОТАЦИЯ

Цель данного курса — познакомить студентов с общими принципами и методами исследований различных механических задач, основанными на уравнениях Лагранжа, с основными понятиями и принципами теории классического электромагнитного поля и ее математическим аппаратом.. В результате работы над данным курсом студент должен овладеть основами лагранжевой механики, её терминологией, техникой и языком, аппарат классической электродинамики и его применение его к исследованию электромагнитных взаимодействий в простейшем и наиболее важном случае электродинамики вакуума и точечных зарядов. Студент должен научиться теоретическому мышлению на новом уровне, включающем в себя применение полученных теоретических знаний к решению вычислительных задач механики и электродинамки. Указанный курс является важным как самостоятельно, так и как первый необходимый шаг для дальнейшего изучения других разделов теоретической физики.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель данного курса — познакомить студентов с общими принципами и методами исследований различных механических задач, основанными на уравнениях Лагранжа, с основными понятиями и принципами теории классического электромагнитного поля и ее математическим аппаратом.. В результате работы над данным курсом студент должен овладеть основами лагранжевой механики, её терминологией, техникой и языком, аппарат классической электродинамики и его применение его к исследованию электромагнитных взаимодействий в простейшем и наиболее важном случае электродинамики вакуума и точечных зарядов. Студент должен научиться теоретическому мышлению на новом уровне, включающем в себя применение полученных теоретических знаний к решению вычислительных задач механики и электродинамки. Указанный курс является важным как самостоятельно, так и как первый необходимый шаг для дальнейшего изучения других разделов теоретической физики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Знания, полученные при изучении курса теоретической механики, необходимы студентам для освоения последующих курсов теоретической физики: квантовой механики, статистической физики, релятивистской квантовой механики, теоретической физики твердого тела, макроскопической электродинамики и других курсов теоретической физики. Кроме того, знание аналитической механики и электродинамики совершенно необходимо при освоении многих специализированных дисциплин по теоретической и экспериментальной физике, изучаемых студентами старших курсов.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Запана		Кол и наиманарания	Кол и поимоновоние
Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
Н	аучно-исследовательск	ий	
Выбор методов и подходов к решению поставленной научной проблемы, формулировка математической модели явления, аналитические и численные расчеты	Модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной деятельности в науке, технике, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса	ПК-2 [1] - Способен критически оценивать применяемые методики и методы исследования Основание: Профессиональный стандарт: 40.011	3-ПК-2[1] - Знать методики оценки и выбора методов исследования.; У-ПК-2[1] - Уметь критически оценивать применяемые методики и методы исследования; В-ПК-2[1] - Владеть навыками оценки методов исследования по выбранным критериям.
	вводственно-технологи	ческий ПК-9 [1] - Способен	D TIK 0[1] D
Квалифицированное использование исходных данных, материалов, оборудования, методов математического и физического моделирования производственнотехнологических процессов и характеристик	Модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной	проводить математическое и компьютерное моделирование объектов, систем, процессов и явлений в избранной предметной области Основание: Профессиональный стандарт: 40.011	3-ПК-9[1] - Знать основные методы и принципы математического и компьютерного моделирования объектов, систем, процессов и явлений в избранной предметной области.; У-ПК-9[1] - Уметь применять методы математического и
характеристик наукоемких технических устройств и объектов, включая использование алгоритмов и программ расчета их	предметнои деятельности в науке, технике, технике, технологиях, а также в сферах наукоемкого производства, управления и	стандарт: 40.011	математического и компьютерного моделирования объектов, систем, процессов и явлений в избранной предметной области; В-ПК-9[1] - Владеть

параметров	бизнеса		навыками математического и компьютерного моделирования объектов, систем, процессов и явлений
9	кспертно-аналитическі	ий	
Изучение и анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования, сбор и обработка научной и аналитической информации с использованием современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий, подготовка данных для составления обзоров, отчетов и научных публикаций, участие во внедрении результатов исследований и разработок	Модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса	ПК-10 [1] - Способен к построению аналитических и количественных моделей процессов в природе, технике и обществе и к выбору на их основе путей решения теоретических и практических и практического, технико-технологического характера Основание: Профессиональный стандарт: 40.011	3-ПК-10[1] - Знать основные методы построения аналитических и количественных моделей процессов в природе, технике и обществе. ; У-ПК-10[1] - Уметь применять методы и принципы построения аналитических и количественных моделей процессов в природе, технике и обществе для решения теоретических и практических и практических проблем природного, экологического, техникотехнологического характера; В-ПК-10[1] - Владеть навыками построения аналитических и количественных моделей процессов в природе, технике и обществе и к выбору на их основе путей решения теоретических и практических и практических и практических и практических проблем природного, экологического, техникотехнологического характера

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	Раздел 1	1-8	8/8/0		25	УО-8	3-ПК- 2, y- ПК-2, B- ПК-2, 3-ПК- 9, y- ПК-9, B- ПК-9, 3-ПК- 10, y- ПК- 10,
2	Раздел 2	9-16	8/8/0		25	УО-16	3-IIK- 2, y- IIK-2, B- IIK-2, 3-IIK- 9, y- IIK-9, 3-IIK- 10, y- IIK- 10, B- IIK- 10,
	Итого за 1 Семестр Контрольные мероприятия за 1		16/16/0		50 50	3	3-ПК- 2,

Семестр			У-
_			ПК-2,
			B-
			ПК-2,
			3-ПК-
			9, У-
			У-
			ПК-9,
			B-
			ПК-9,
			3-ПК-
			10,
			У-
			ПК-
			10,
			B-
			ПК-
			10

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование		
чение			
УО	Устный опрос		
3	Зачет		

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	1 Семестр	16	16	0
1-8	Раздел 1	8	8	0
1	Принцип наименьшего действия. Получение уравнений	Всего а	удиторных	часов
	Лагранжа.	1	1	0
	Принцип наименьшего действия. Получение уравнений	Онлайн	I	
	Лагранжа.	0	0	0
2 - 3	Закон сохранения энергии. Закон сохранения импульса.	Всего а	удиторных	часов
	Закон сохранения момента.	2	2	0
	Закон сохранения энергии. Закон сохранения импульса.	Онлайн	I	
	Закон сохранения момента.	0	0	0
4 - 6	Движение в центральном поле. Сохраняющиеся	Всего а	удиторных	часов
	величины. Понятие о дифференциальном и полном	3	3	0
	сечении рассеяния. Формула Резерфорда.	Онлайн	I	
	Движение в центральном поле. Сохраняющиеся величины.	0	0	0
	Понятие о дифференциальном и полном сечении			
	рассеяния. Формула Резерфорда.			
7	Функция Гамильтона и уравнения Гамильтона.	Всего а	удиторных	часов

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Функция Гамильтона и уравнения Гамильтона.	1	1	0
	тупкция гамизитона и уразнения гамизитона.	Онлай	in	
		0	0	0
8	Скобки Пуассона. Уравнение Гамильтона-Якоби.	•		ных часов
O	Скобки Пуассона. Уравнение Гамильтона-Якоби.	1	1	0
	Скооки пунстии. У равнение тамильтона икоои.	Онлай	<u> 1</u> (111	0
		0	0	0
9-16	Danwar 1	8	8	0
9 -10 9 - 10	Раздел 2			
9 - 10	Принцип относительности. Интервал. Преобразование Лоренца. Релятивистская механика. 4-импульс			ных часов
	·	2	2	0
	частицы. Преобразование энергии и импульса при	Онлай		
	преобразованиях Лоренца. Функция Лагранжа частицы	0	0	0
	В электро			
	Принцип относительности. Интервал. Преобразование			
	Лоренца. Релятивистская механика. 4-импульс частицы.			
	Преобразование энергии и импульса при преобразованиях			
	Лоренца. Функция Лагранжа частицы в электромагнитном			
	поле. ;-потенциал электромагнитного поля. Условие			
11	Лоренца.	Распо	011111111111111111111111111111111111111	, , , , , , , , , , , , , , , , , , ,
11	Система уравнений Максвелла. Потенциалы поля.	1	аудитор.	ных часов
	Выражение для напряженностей полей через	1	<u> </u>	0
	потенциалы.	Онлай	1	
	Система уравнений Максвелла. Потенциалы поля.	0	0	0
12 - 13	Выражение для напряженностей полей через потенциалы.	Распо	011111111111111111111111111111111111111	, , , , , , , , , , , , , , , , , , ,
12 - 13	Электростатика. Общее решение уравнения Пуассона.			ных часов
	Электростатическая система зарядов. Электрическое	2	. 2	0
	поле на далеких расстояниях от системы неподвижных	Онлай	_	
	зарядов.	0	0	0
	Электростатика. Общее решение уравнения Пуассона. Электростатическая система зарядов. Электрическое поле			
	на далеких расстояниях от системы неподвижных зарядов.			
	1			
	Уравнения Максвелла в магнитостатике. Магнитный			
	момент. Магнитное поле на далеких расстояниях от			
14	системы стационарно движущихся зарядов.	Распо	OVERNITOR	
14	Уравнения Максвелла для электромагнитных волн. Плоская волна.	1	аудитор.	ных часов
	Уравнения Максвелла для электромагнитных волн.		1 	0
	Плоская волна.	Онлай		
1.5		0	0	0
15	Запаздывающие потенциалы. Поле излучения.		аудитор:	ных часов
	Дипольное излучение.	1	<u> </u>	0
	Запаздывающие потенциалы. Поле излучения. Дипольное	Онлай		
	излучение.	0	0	0
16	Торможение излучением. Рассеяние электромагнитных	Всего	аудитор	ных часов
	волн свободными зарядами. Томсоновское сечение	1	1	0
	рассеяния.	Онлай		
	Торможение излучением. Рассеяние электромагнитных	0	0	0
		1	1	1
	волн свободными зарядами. Томсоновское сечение рассеяния.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (компьютерные практикумы, разбор домашних заданий, система контрольно-измерительных материалов) а также, проведение занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-10	3-ПК-10	3, УО-8, УО-16
	У-ПК-10	3, УО-8, УО-16
	В-ПК-10	3, УО-8, УО-16
ПК-2	3-ПК-2	3, УО-8, УО-16
	У-ПК-2	3, УО-8, УО-16
	В-ПК-2	3, УО-8, УО-16
ПК-9	3-ПК-9	3, УО-8, УО-16
	У-ПК-9	3, УО-8, УО-16
	В-ПК-9	3, YO-8, YO-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
90-100	5 — «отлично»	A	четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
			материал, грамотно и по существу
70-74	ч «хорошо»		излагает его, не допуская
/0-/4		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»	E	неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
			Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60	2 –	F	существенные ошибки. Как правило,
	«неудовлетворительно»	1	оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 53 Л22 Теоретическая физика Т.1 Механика, Москва: Физматлит, 2017
- 2. ЭИ В 31 Теоретическая физика. Квантовая электродинамика : учебник для вузов, Москва: Юрайт, 2022
- 3. ЭИ В 31 Теоретическая физика. Общая теория относительности : учебник для вузов, Москва: Юрайт, 2022
- 4. ЭИ Г70 Теория поля: , [Москва]: [МИФИ], 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Курс разбит на 2 раздела, включающие в себя такие темы, как принцип наименьшего действия, уравнения Лагранжа, Гамильтона-Якоби, уравнения Максвелла.

Аттестация разделов представлен следующими формами контроля:

– Устный опрос (8 неделя обучения).

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачипроблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

– Устный опрос (16 неделя обучения).

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачипроблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждого раздела.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс разбит на 2 раздела, включающие в себя такие темы, как принцип наименьшего действия, уравнения Лагранжа, Гамильтона-Якоби, уравнения Максвелла.

Аттестация разделов представлен следующими формами контроля:

– Устный опрос (8 неделя обучения).

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку – не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-

проблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

– Устный опрос (16 неделя обучения).

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку – не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачипроблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждого раздела.

Автор(ы):

Тронин Иван Владимирович, к.ф.-м.н.

Быркин Виктор Александрович, к.ф.-м.н.

Потешин Сергей Станиславович

Белогорлов Антон Анатольевич, к.ф.-м.н., доцент

Грехов Алексей Михайлович, к.ф.-м.н.