Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА КОНСТРУИРОВАНИЯ ПРИБОРОВ И УСТАНОВОК

ОДОБРЕНО УМС ИФТИС

Протокол № 1

от 28.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕХНИЧЕСКИЕ СРЕДСТВА КИБЕРФИЗИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ И ИНФОРМАЦИОННЫХ СИСТЕМ

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	5	180	16	48	0		80	0	Э
Итого	5	180	16	48	0	48	80	0	

АННОТАЦИЯ

Дисциплина дает обучающимся возможность освоения базовых понятий и основ измерительных информационных систем, используемых в технике физического и радиационного эксперимента. В курсе рассматриваются методы и средства дискретизации аналоговых сигналов, методы и средства аналого-цифрового преобразования сигналов, принципы, модели и алгоритмы цифровой обработки сигналов в ИИС.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью учебной дисциплины «Технические средства киберфизических измерительных и информационных систем» является ознакомление студентов с основными принципами, моделями и алгоритмами цифровой обработки сигналов, осуществляемых элементами информационных измерительных систем (ИИС), используемых в технике физического и радиационного эксперимента. В курсе рассмотрены базовые вопросы построения измерительных систем с использованием цифровой обработки сигналов, дается представление о типовых структурах и методах проектирования цифровых фильтров.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Технические средства киберфизических измерительных и информационных систем» в рабочем учебном плане находится в профессиональном модуле программы академической магистратуры «Информационные измерительные системы ядерных энергетических установок и техника радиационного эксперимента».

Изучение дисциплины основано на базовых знаниях и навыках, формируемых в следующих дисциплинах бакалавриата: «Теоретические основы электротехники», «Общая электротехника и электроника», «Техника и методы физических измерений и методы физических расчетов», «Информационно-измерительные системы ЯЭУ».

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование	Код и наименование индикатора достижения компетенции
компетенции	
УК-2 [1] – Способен управлять	3-УК-2 [1] – Знать: этапы жизненного цикла проекта; этапы
проектом на всех этапах его	разработки и реализации проекта; методы разработки и
жизненного цикла	управления проектами
	У-УК-2 [1] – Уметь: разрабатывать проект с учетом анализа
	альтернативных вариантов его реализации, определять
	целевые этапы, основные направления работ; объяснить
	цели и сформулировать задачи, связанные с подготовкой и
	реализацией проекта; управлять проектом на всех этапах
	его жизненного цикла
	В-УК-2 [1] – Владеть: методиками разработки и управления
	проектом; методами оценки потребности в ресурсах и

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

знании) профессиональ Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
7.0		ртный	D THE 14 1513 D
Контроль качества конструирования электрофизической и электромеханической аппаратуры в атомной отрасли	Атомное ядро, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности, современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка и технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, электронные и электрофизические приборы, микропроцессорная техника и аппаратнопрограммные устройства, электромеханические приборы.	ПК-14.1 [1] - Способен обеспечить контроль качества конструирования электрофизической и электромеханической аппаратуры в атомной отрасли Основание: Профессиональный стандарт: 24.078, Анализ опыта: Контроль качества конструирования электрофизической и электромеханической аппаратуры в атомной отрасли	3-ПК-14.1[1] - Знать особенности контроля качества конструирования электрофизической и электромеханической аппаратуры в атомной отрасли; У-ПК-14.1[1] - Уметь контролировать качество конструирования электрофизической и электромеханической аппаратуры в атомной отрасли; В-ПК-14.1[1] - Владеть навыками контроля качества конструирования электрофизической и электромеханической аппаратуры в атомной отрасли
Оценка	Атомное ядро,	ПК-12 [1] - Способен	3-ПК-12[1] - Знать

предлагаемого решения или проекта по отношению к современному мировому уровню, подготовка экспертного заключения

ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности, современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка и технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, электронные и электрофизические приборы, микропроцессорная техника и аппаратнопрограммные устройства, электромеханические

объективно оценить предлагаемое решение или проект по отношению к современному мировому уровню, подготовить экспертное заключение

Основание:
Профессиональный стандарт: 24.078,
Анализ опыта: Оценка предлагаемого решения или проекта по отношению к современному мировому уровню, подготовка экспертного заключения

основные критерии оценки предлагаемого решения или проекта по отношению к современному мировому уровню; У-ПК-12[1] - Уметь оценивать предлагаемые решения на соответствие современному мировому уровню, подготовить экспертное заключение; В-ПК-12[1] - Владеть навыками подготовки экспертных заключений по предлагаемым проектам

научно-исследовательский

Выполнение экспериментальных и теоретических исследований для решения научных и производственных задач

Атомное ядро, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности, современная электронная схемотехника, электронные системы ядерных и физических установок, системы

приборы.

ПК-4 [1] - Способен самостоятельно выполнять экспериментальные и теоретические исследования для решения научных и производственных задач

Основание: Профессиональный стандарт: 24.078, Анализ опыта: 3-ПК-4[1] - Знать: цели и задачи проводимых исследований; основные методы и средства проведения экспериментальных и теоретических исследований; методы и средства математической обработки результатов экспериментальных

автоматизированного управления ядернофизическими установками, разработка и технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, электронные и электрофизические приборы, микропроцессорная техника и аппаратнопрограммные устройства, электромеханические приборы.

Выполнение экспериментальных и теоретических исследований для решения научных и производственных задач

данных; У-ПК-4[1] - Уметь: применять методы проведения экспериментов; использовать математические методы обработки результатов исследований и их обобщения; оформлять результаты научноисследовательских работ; В-ПК-4[1] - Владеть: навыками самостоятельного выполнения экспериментальных и теоретических исследования для решения научных и производственных задач

проектный

Проведение расчетов и проектирования физических установок и приборов с использованием современных информационных технологий

Атомное ядро, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности, современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка и технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих

ПК-5 [1] - Способен проводить расчет и проектирование физических установок и приборов с использованием современных информационных технологий

Основание:
Профессиональный стандарт: 24.078,
Анализ опыта:
Проведение расчетов и проектирования физических установок и приборов с использованием современных информационных технологий

3-ПК-5[1] - Знать основные физические законы и стандартные прикладные пакеты используемые при моделировании физических процессов и установок; У-ПК-5[1] - Уметь применять стандартные прикладные пакеты используемые при моделировании физических процессов и установок; В-ПК-5[1] - Владеть стандартными прикладными пакетами используемыми при моделировании физических процессов и установок

излучений на человека и окружающую среду, электронные и электрофизические приборы, микропроцессорная техника и аппаратнопрограммные устройства, электромеханические приборы.

инновационный

Проектирование, создание и внедрение новых продуктов и систем и применение теоретических знаний в реальной инженерной практике

Атомное ядро, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности. современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками, разработка и технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, электронные и электрофизические приборы, микропроцессорная техника и аппаратнопрограммные устройства, электромеханические приборы.

ПК-13 [1] - Способен проектировать, создавать и внедрять новые продукты и системы и применять теоретические знания в реальной инженерной практике

Основание:
Профессиональный стандарт: 24.078,
Анализ опыта:
Проектирование,
создание и внедрение новых продуктов и систем и применение теоретических знаний в реальной инженерной практике

3-ПК-13[1] - Знать математические методы и компьютерные технологии, необходимые для проектирования и разработки программного обеспечения для инженерного анализа инновационных продуктов.; У-ПК-13[1] - Уметь разрабатывать и тестировать программное обеспечение для инженерного анализа инновационных продуктов.; В-ПК-13[1] - владеть навыками разработки и тестирования программного обеспечения для инженерного анализа инновационных продуктов.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	1 Семестр						
1	Первый раздел	1-8	8/24/0		25	КИ-8	3-ПК-4, У-ПК-4, B-ПК-4, 3-ПК-5, У-ПК-5, B-ПК-12, У-ПК-12, B-ПК-13, У-ПК-13, В-ПК-13, 3-ПК-14.1, У-ПК-14.1, У-ПК-14.1, B-ПК-14.1, B-ПК-14.1, B-ПК-14.1, B-ПК-14.1, B-ПК-14.1, B-ПК-14.1,
2	Второй раздел	9-16	8/24/0		25	КИ-16	3-IIK-4, Y-IIK-4, B-IIK-4, 3-IIK-5, Y-IIK-5, B-IIK-12, Y-IIK-12, B-IIK-13, Y-IIK-13, B-IIK-13, 3-IIK-14.1, Y-IIK-14.1, Y-IIK-14.1, B-IIK-14.1, B-IIK-14.1, B-IIK-14.1, B-IIK-14.1, B-IIK-14.1, B-IIK-14.1,
	Итого за 1 Семестр		16/48/0		50		
	Контрольные мероприятия за 1 Семестр				50	Э	3-ПК-4, У-ПК-4, В-ПК-4,

•			
			3-ПК-5,
			У-ПК-5,
			В-ПК-5,
			3-ПК-12,
			У-ПК-12,
			В-ПК-12,
			3-ПК-13,
			У-ПК-13,
			В-ПК-13,
			3-ПК-14.1,
			У-ПК-14.1,
			В-ПК-14.1,
			3-УК-2,
			У-УК-2,
			В-УК-2

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

0	бозначение	Полное наименование
Kl	N	Контроль по итогам
Э		Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	1 Семестр	16	48	0
1-8	Первый раздел	8	24	0
1	Общая характеристика измерительных	Всего а	удиторных	часов
	информационных систем (ИИС), используемых в	2	6	0
	технике физического и радиационного эксперимента	Онлайн	I	
	Место ИИС в современной измерительной технике.	0	0	0
	Классификация ИИС. Обобщенная структурная схема			
	ИИС. Составные элементы ИИС и их назначение. Цикл			
	обращения информации в ИИС. Преобразование сигналов			
	в ИИС. Общие принципы построения и применения ИИС.			
2 - 4	Методы и средства дискретизации аналоговых	Всего а	удиторных	часов
	сигналов	2	6	0
	Общая постановка задачи дискретизации аналоговых	Онлайн	I	
	сигналов в ИИС. Классификация методов дискретизации.	0	0	0
	Равномерная дискретизация. Выбор шага дискретизации с			
	помощью функций отсчетов. Теорема Котельникова.			
	Свойства функций отсчетов. Практические аспекты			
	выбора шага дискретизации реальных сигналов с			
	помощью теоремы Котельникова. Метод точечной			
	интерполяции в задачах дискретизации. Дискретизация с			
	использованием интерполирующих полиномов Лагранжа.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	фильтров. Модели дискретных сигналов. Характеристики дискретных (цифровых) фильтров. Импульсная характеристика дискретного фильтра. Основной алгоритм цифровых фильтров. Частотный коэффициент передачи,			
	дискретных (цифровых) фильтров. Импульсная			
	фильтров. Молели дискретных сигналов. Характеристики			
		1	1	
	фильтрации. Структурные элементы линейных цифровых			
	дискретных сигналов. Общий вид уравнений цифровой	0	0	0
	Основные понятия линейной цифровой обработки	Онлайн		
	сигналов в ИИС	4	12	0
9 - 12	Принципы, модели и алгоритмы цифровой обработки	Всего а	аудиторных	часов
9-16	Второй раздел	8	24	0
	контурного интегрирования.			
	вычетах. Метод разложения на простые дроби. Метод			
	преобразование, способы его вычисления. Теорема о			
	последовательности отсчетов. Обратное Z –			
	преобразования. Линейность преобразования, сдвиг			
	преобразованием Лапласа. Основные свойства Z-			
	дискретных сигналов. Связь Z-преобразования с			
	обработки сигналов. Z-преобразование некоторых			
	Z-преобразование, его использование в задачах цифровой			
	Разложение непрерывных сигналов по функциям Уолша.			
	Спектральные представления в базисе функций Уолша.			
	функций Уолша. Основные свойства функций Уолша.			
	Радемахера. Функции Уолша. Системы упорядочения			
	кусочно-постоянных знакопеременных функций. Функции	0	0	0
	Ортогональные преобразования сигналов в базисе	Онлайн	-	1
	цифровой фильтрации сигналов	2	6	0
7 - 8	Ортогональные преобразования и их использование в	Всего а	аудиторных	к часов
	конкретного приложения.			
	характеристики АЦП. Принципы выбора АЦП для			
	преобразования. Статические и динамические			
	помех. Технические средства аналого-цифрового			
	квантования с учетом вероятностных характеристик			
	сигналов при наличии помех. Выбор интервала			
	интервала квантования. Шумы квантования. Квантование			
	среднеквадратической погрешности квантования от			
	погрешности квантования. Зависимость			
	преобразования. Методические и инструментальные			
	уровню. Статические передаточные характеристики	0	0	0
	Общая постановка задачи квантования сигналов по	Онлайн		
	сигналов	2	6	0
5 - 6	Методы и средства аналого-цифрового преобразования	Всего а	аудиторных	часов
	некратными интервалами. Теория восстановления.			
	и первой степени. Дискретизация с кратными и			
	дискретизация аналогового сигнала полиномами нулевой			
	экстраполяция. Линейная экстраполяция. Адаптивная			
	экстраполирующих многочленов Тейлора. Ступенчатая			
	восстановления сигнала. Дискретизация с использованием			
	оценки величины приведенной погрешности			
	степеней. Использование неравенства Бернштейна для			
	интерполяцией полиномами нулевой, первой и второй			
	Оценка погрешности восстановления аналогового сигнала методом интерполяции Выбор шага дискретизации			

	АЧХ и ФЧХ цифрового фильтра. Системная функция цифрового фильтра. Цифровые алгоритмы преобразований в ИИС. Связь системной функции с частотной характеристикой фильтра.			
13 - 16	Синтез систем цифровой обработки сигналов	Всего а	ı удиторных	часов
	Устойчивость и физическая реализуемость дискретных	4	12	0
	линейных систем. Устойчивость нерекурсивных цифровых	Онлайн		
	фильтров. Критерии устойчивости рекурсивных цифровых	0	0	0
	фильтров. Реализация алгоритмов цифровой обработки			
	сигналов. Структурные схемы нерекурсивных фильтров.			
	Принципы построения рекурсивных цифровых фильтров.			
	Прямые и канонические формы структур фильтров. Этапы			
	проектирования линейных цифровых фильтров. Методы			
	синтеза фильтров с конечной импульсной			
	характеристикой. Достоинства и недостатки КИХ-			
	фильтров. Метод проектирования КИХ-фильтров с			
	помощью функций окна. Проектирование фильтров с			
	импульсной характеристикой бесконечной длины. Метод			
	инвариантного преобразования импульсной			
	характеристики, его варианты. Метод билинейного z-			
	преобразования. Достоинства и недостатки БИХ-			
	фильтров. Цифровые форматы данных и их роль в			
	обработке сигналов.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ОС НИЯУ МИФИ по направлению 14.04.02 «Ядерные физика и технологии» при изучении этой дисциплины широко используются активные и интерактивные методы обучения. В процессе проведения лекционных занятий регулярно применяется:

разминка, в процессе которой в течение 5-8 минут времени в начале занятия студентам задаются вопросы по теме предыдущих занятий;

Часть лекционных занятий проводится в форме презентаций в формате PowerPoint (презентации представлены в комплекте УМКД).

В процессе практических занятий, обсуждения вопросов выполнения домашнего задания, консультаций используются следующие интерактивные приемы и методы:

дискуссии;

метод «мозгового штурма»;

метод обсуждения конкретных ситуаций (case-study), организуемый в виде работы малых групп.

Применение этих методов позволяет обеспечить максимально полное вовлечение всех обучаемых в образовательный процесс, сделать их заинтересованными и мотивированными участниками образовательной деятельности.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	-	(КП 1)
ПК-12	3-ПК-12	Э, КИ-8, КИ-16
	У-ПК-12	Э, КИ-8, КИ-16
	В-ПК-12	Э, КИ-8, КИ-16
ПК-13	3-ПК-13	Э, КИ-8, КИ-16
	У-ПК-13	Э, КИ-8, КИ-16
	В-ПК-13	Э, КИ-8, КИ-16
ПК-14.1	3-ПК-14.1	Э, КИ-8, КИ-16
	У-ПК-14.1	Э, КИ-8, КИ-16
	В-ПК-14.1	Э, КИ-8, КИ-16
ПК-4	3-ПК-4	Э, КИ-8, КИ-16
	У-ПК-4	Э, КИ-8, КИ-16
	В-ПК-4	Э, КИ-8, КИ-16
ПК-5	3-ПК-5	Э, КИ-8, КИ-16
	У-ПК-5	Э, КИ-8, КИ-16
	В-ПК-5	Э, КИ-8, КИ-16
УК-2	3-УК-2	Э, КИ-8, КИ-16
	У-УК-2	Э, КИ-8, КИ-16
	В-УК-2	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 – «отлично»	A	Оценка «отлично» выставляется студенту,

			Ţ.
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
			по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	E	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
Ниже 60			
			•
			*
	2 –		недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А73 Информационно-измерительные системы ЯР и ЭУ : , Ануфриев Б.Ф., Москва: МИФИ, 2008
- 2. 681.7 А 97 Информационные измерительные и оптико-электронные системы на основе микро- и наномеханических датчиков угловой скорости и линейного ускорения : , Грузевич Ю.К., Ачильдиев В.М., Солдатенков В.А., Москва: МГТУ им. Н. Э. Баумана, 2016
- 3. ЭИ 3-38 Методы и средства измерений и контроля: дефектоскопы : Учебное пособие для вузов, Костин В. Н., Бирюков Д. Ю., Зацепин А. Ф., Москва: Юрайт, 2021
- 4. ЭИ В 67 Метрология и измерительная техника: электронные средства измерений электрических величин: Учебное пособие для вузов, Волегов А. С., Степанова Е. А., Незнахин Д. С., Москва: Юрайт, 2020
- 5. 004 С32 Цифровая обработка сигналов : учеб. пособие для вузов, Сергиенко А.Б., М. [и др.]: Питер, 2007

6. 004 C32 Цифровая обработка сигналов : учебное пособие для вузов, Сергиенко А.Б., Санкт-Петербург: БХВ - Петербург, 2011

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 55 Б48 Модели и методы магнитотеллурики : , Дмитриев В.И., Бердичевский М.Н., Москва: Научный мир, 2009
- 2. 681.5 К47 Основы измерений. Датчики и электронные приборы : учебное пособие, Клаассен К.Б., Долгопрудный: Интеллект, 2012

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В конце освоения дисциплины студент сдает экзамен.

Оценка неудовлетворительно (менее 30 баллов) ставится, если студент не смог продемонстрировать ключевые теоретические знания и навыки по данной дисциплине не представил требуемую по техническому заданию проектную документацию..

Оценка удовлетворительно (30-34 баллов) ставится, если студент продемонстрировал ключевые теоретические знания и навыки, представил требуемую по техническому заданию проектную документацию но не смог продемонстрировать углубленное понимание взаимосвязей между основными понятиями по данной дисциплине, что может выражаться в неуверенном ответе на вопросы преподавателя.

Оценка хорошо (35-44 баллов) ставится, если студент продемонстрировал ключевые знания и навыки, продемонстрировал углубленное понимание взаимосвязей между основными понятиями дисциплины, что может выражаться в уверенном ответе на вопросы преподавателя, представил качественно выполненную и требуемую по техническому заданию проектную документацию но не смог сразу разъяснить особенности взаимосвязи между элементами конструкции.

Оценка отлично (45-50 баллов) ставится, если студент продемонстрировал ключевые знания и навыки, продемонстрировал углубленное понимание вопросов, обсуждаемых в курсе представил качественно выполненную и требуемую по техническому заданию проектную

документацию, и смог сразу разъяснить особенности взаимосвязи между элементами конструкции.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1.Общие положения

- 1.1. При реализации программы дисциплины используются образовательные технологии в форме практических занятий и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.2.На первом занятии преподаватель:

знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;

уточняет планы практических (семинарских) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;

рекомендует основную и дополнительную литературу для успешного освоения дисциплины;

доводит до сведения студентов систему оценки знаний.

- 2. Рекомендации по подготовке и преподаванию дисциплины
- 2.1. Рекомендации по подготовке и проведению практических (семинарских) занятий:
- 2.1.1. Цель практических (семинарских) занятий предоставление возможностей для углубленного изучения теории, овладения практическими навыками и выработки самостоятельного творческого мышления у студентов. На каждом таком занятии обучающиеся решают практические задачи и демонстрируют результаты выполнения домашнего задания, выданного на предыдущем занятии.
- 2.1.2. На каждом таком занятии обучающиеся решают практические задачи и демонстрируют результаты выполнения домашнего задания, выданного на предыдущем занятии.
 - 2.2. Рекомендации по организации руководства самостоятельной работой студентов
- 2.2.1. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 2.2.2. В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем.
 - 2.3. Рекомендации по осуществлению контроля знаний обучаемых
- 2.3.1. По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 2.3.2.По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и итоговая аттестация.
- 2.3.3. Текущий контроль подразумевает проверку готовности студентов к семинарским и практическим занятиям, могут быть использованы различные проверочные задания.
- 2.3.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и в конце семестра.
- 2.3.5. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает приём экзамена и самостоятельную подготовку к нему.

Автор(ы):

Ануфриев Борис Федорович, к.т.н., доцент