Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 2

от 26.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МАТЕМАТИЧЕСКИЕ ОСНОВАНИЯ СИНЕРГЕТИКИ: КОЛЕБАНИЯ И ВОЛНЫ, ХАОС И СТРУКТУРЫ

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	2	72	12	12	0		21	0	Э
Итого	2	72	12	12	0	10	21	0	

АННОТАЦИЯ

Содержание курса - ознакомление с современным состоянием нелинейной стохастической физики, синергетическими явлениями в окружающем человека мире, методами их математического описания и результатами их исследования. Курс сопровождается решением ряда прикладных задач.

Наблюдаемые в физических, химических, технических, биологических и социальных системах процессы перехода от одного состояния к другому, обусловленные главным образом свойствами самой системы, имеют важнейшее значение для их функционирования и требуют своего изучения и осмысления. Такие процессы самоорганизации и составляют предмет науки, получившей название синергетики. Различным вопросам синергетики в последние годы посвящено много публикаций, в том числе в виде монографий. Они продолжают привлекать внимание исследователей и курс лекций направлен на формирование у студентов знаний и навыков исследования процессов самоорганизации в различных физических системах, обсуждение общности языка и формального аппарата синергетики в применении и к другим (не физическим) системам. Изучение основ синергетики имеет важное принципиальное значение в формировании мировоззрения специалистов. Предлагаемый курс построен следующим образом. Часть посвящена математическому аппарату, широко используемому в синергетике – это теория устойчивости и бифуркаций в системах, описываемых эволюционными уравнениями, приближенное (сокращенное) описание поведения системы с использованием понятия параметров порядка, принципа подчинения, различного рода асимптотических методов. Математический аппарат иллюстрируется на различных физических примерах, имеющих и самостоятельное значение. Приведенные примеры показывают, как изменением некоторого внешнего управляющего параметра можно подвести систему к порогу неустойчивости и каким может быть дальнейшее поведение системы при превышении порога неустойчивости. В последующей части курса обсуждается динамический хаос, волны и структуры в активных средах, случайные процессы, описываемые уравнением Фоккера-Планка.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины «Математические основания синергетики: колебания и волны, хаос и структуры» является изучение современных и классических методов применения интегральных уравнений для решения задач прикладной и математической физики.

Основными целями освоения дисциплины являются:

- получить представление о современных проблемах нелинейной физики;
- освоить математический и понятийный аппарат синергетики;
- научиться применять полученные знания при решении задач прикладной физики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для успешного освоения программы данной дисциплины требуется повторение изученных материалов по следующим дисциплинам (в скобках указываются содержательные разделы, полезные для изучения данной дисциплины):

«Математический анализ» (формула Тейлора с остаточным членом в форме Пеано, разложение в ряд Тэйлора различных элементарных функций, интегральное исчисление функции одной переменной, понятие определенного и неопределенного интеграла);

«Линейная алгебра» (системы линейных алгебраических уравнений (СЛАУ), критерий Кронекера-Капелли совместности СЛАУ, однородные СЛАУ, критерий существования ненулевого решения однородной СЛАУ);

«Обыкновенные дифференциальные уравнения» (ОДУ с разделяю-щимися переменными, однородные ОДУ, линейные ОДУ первого порядка, уравнения в полных дифференциалах, линейные ОДУ высших порядков, линейные однородные ОДУ, свойства их решений, фундаментальная система решений ЛОДУ, структура обще-го решения ЛОДУ, ЛОДУ с постоянными коэффициентами, структура общего решения ЛНДУ, метод вариации произвольных постоянных, ЛНДУ с постоянными коэффициен-тами и специальной правой частью).

«Теория функций комплексного переменного» (аналитические функ-ции, условия Коши-Римана, оператор Лапласа, гармонические функции, связь аналитиче-ских функций с гармоническими,, лемма Жордана, теория вычетов).

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-2 [1] — Способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности	З-ОПК-2 [1] — Знать современные информационные технологии и программные средства для решения задач профессиональной деятельности У-ОПК-2 [1] — Уметь выбирать и использовать современные информационные технологии и программные средства для решения задач профессиональной деятельности В-ОПК-2 [1] — Владеть навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
H	аучно-исследовательск	сий	
Участие в проведении	Природные и	ПК-4.2 [1] - Способен	3-ПК-4.2[1] - Знать
теоретических	социальные явления	применять методы	методы
исследований,	и процессы	математической и	математической и

построении физических, математических и компьютерных моделей изучаемых процессов и явлений, в проведении аналитических исследований в предметной области по профилю специализации

теоретической физики, методы математического и компьютерного моделирования процессов в области физики конденсированных сред

Основание: Профессиональный стандарт: 40.044

теоретической физики, методы математического и компьютерного моделирования процессов в области физики конденсированных сред; У-ПК-4.2[1] - Уметь применять методы математической и теоретической физики, методы математического и компьютерного моделирования процессов в области физики конденсированных сред; В-ПК-4.2[1] - Владеть методами математической и теоретической физики, методами математического и компьютерного моделирования процессов в области физики конденсированных сред

инновационный

Проведение фундаментальных и прикладных математических и физических исследований, направленных на решение инженерных, технических и информационных задач

природные и социальные явления и процессы

ПК-5 [1] - Способен управлять программами освоения новой продукции и технологии, разрабатывать эффективную стратегию

Основание: Профессиональный стандарт: 40.011, 40.034

3-ПК-5[1] - Знать основные методы и принципы управления программами освоения новой продукции и технологии, разрабатывать эффективную стратегию в сфере своей профессиональной деятельности.; У-ПК-5[1] - Уметь находить оптимальные решения при освоения новой продукции и

разрабатывать эффективную стратегию.; В-ПК-5[1] - Владеть навыками нахождения оптимальных решений для освоения новой продукции и технологии, разрабатывать эффективную стратегию

технологии,

экспертно-аналитический

Изучение и анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования, сбор и обработка научной и аналитической информации с использованием современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий

Модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально экономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса

ПК-10 [1] - Способен к аналитической и количественной оценке процессов в природе, технике и обществе и к выбору на их основе путей решения теоретических и практических проблем природного, экологического, техникотехнологического характера

Основание: Профессиональный стандарт: 40.011, 40.044

3-ПК-10[1] - Знать основные методики, цели и задачи построения аналитических и количественных моделей процессов в природе, технике и обществе.; У-ПК-10[1] - Уметь строить аналитические и количественные модели процессов в природе, технике и обществе и выбирать на их основе путей решения теоретических и практических проблем природного, экологического, техникотехнологического характера.; В-ПК-10[1] - Владеть навыками построения аналитических и количественных моделей процессов в природе, технике и обществе и выбора на их основе путей решения теоретических и практических проблем природного, экологического,

	технико-
	технологического
	характера

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Профессиональное воспитание	Создание условий, обеспечивающих, формирование ответственности за профессиональный выбор, профессиональное развитие и профессиональные решения (В18)	Использование воспитательного потенциала дисциплин профессионального модуля для формирования у студентов ответственности за свое профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых
Профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	информационных технологий. 1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с

экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины		Практ. лы)/ орные час.	Обязат. текущий контроль (форма*, неделя)	альный раздел**	Аттестация раздела (форма*, неделя)	и пии
		Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. ч контрол неделя)	Максимальный балл за раздел**	Аттестация раздела (фо неделя)	Индикаторы освоения компетении
	8 Семестр						
1	Первый раздел	1-8	8/8/0		25	T-8	В- ПК- 4.2, 3-ПК- 5, У- ПК-5, В- ПК-5
2	Второй раздел	9-12	4/4/0		25	Д3-12	3- ОПК- 2, У- ОПК- 2, В- ОПК- 2, 3-ПК- 4.2, У- ПК- 4.2, В- ПК- 4.2, 3-ПК- 5, У-

				ПК-5,
				B-
				ПК-5
Итого за 8 Семестр	12/12/0	50		
Контрольные		50	Э	3-
мероприятия за 8				ОПК-
Семестр				2,
				У-
				ОПК-
				2,
				B-
				ОПК-
				2,
				3-ПК-
				4.2, У-
				у- ПК-
				4.2,
				B-
				ПК-
				4.2,
				3-ПК-
				5,
				y-
				ПК-5,
				B-
				ПК-5,
				3-ПК-
				10,
				У-
				ПК-
				10,
				B-
				ПК-
				10

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
T	Тестирование
ДЗ	Домашнее задание
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел Темы занятий / Со	жание Лег	[ек., Пр	р./сем.	Лаб.,
-------------------------	-----------	----------	---------	-------

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

И		час.	, час.	час.
	8 Семестр	12	12	0
1-8	Первый раздел	8	8	0
1	Введение. Основные понятия синергетики.	Всего	аудиторні	ых часов
	Синергетика как новое мировоззрение. Консервативные и	1	1	0
	диссипативные системы. Механическое и	Онлай	íн	
	термодинамическое равновесие. Нелинейность и обратные	0	0	0
	связи. Энтропия и хаос. Процессы самоорганизации.			
	Пространственные и пространственно-временные			
	структуры. Уравнения эволюции. Устойчивость и			
	бифуркации.			
2	Термодинамический анализ нелинейных систем.	Всего	аудиторні	
	Открытые системы в условиях механического равновесия.	1	1	0
	Стационарные неравновесные состояния. Теорема о	Онлай	і́н	
	минимальном производстве энтропии. Невозможность	0	0	0
	упорядоченного поведения в области линейности			
	необратимых процессов. Общий критерий эволюции для			
	равновесных и неравновесных систем.			
3	Нелинейные дифференциальные уравнения.	Всего	аудиторні	ых часов
	Системы нелинейных уравнений с одной и двумя	1	1	0
	степенями свободы, автономные системы. Анализ фазовых	Онлай	і́н	
	траекторий этих систем. Классификация особых точек:	0	0	0
	простые особые точки (центр, узел, фокус, седловая точка)			
	и множественные седловые точки. Предельные циклы.			
4	Основы теории устойчивости и бифуркаций	Всего	аудиторні	ых часов
	нелинейных дифференциальных уравнений.	1	1	0
	Устойчивость по Лагранжу, Пуассону и Ляпунову.	Онлай	і́н	
	Линейный анализ устойчивости. Теория катастроф.	0	0	0
	Бифуркации в простой диссипативной системе.			
	Бифуркация Хопфа и предельные циклы.			
5 - 7	Исследование конкретных нелинейных процессов		аудиторні	
	Статические неустойчивости - переход системы в новое	3	3	0
	состояние. Бистабильность. Автоколебания в	Онлай	íн	
	электрической цепи. Химические осцилляции - реакция	0	0	0
	Белоусова-Жаботинского. Математический маятник.			
	Модель хищник-жертва.			
	Теория тепловой конвекции. Условие механического			
	равновесия жидкостей и газов в гравитационном поле			
	Земли. Адиабатические температуры и механическое			
	равновесие.			
	Уравнения свободной конвекции. Числа Рэлея и Прандтля.			
	Конвекция Рэлея-Бенара. Модель конвекции Лоренца.			
	Критическое число Рэлея. Ячейки Бенара. Турбулизация			
	конвекции при больших числах Рэлея.			
	Конвекция вещества в верхней мантии Земли. Связь между			
	конвективными процессами в верхней мантии Земли и			
	глобальной тектоникой плит земной коры. Оценка			
	скорости перемещения плит.			
8	Типичные сценарии перехода к хаосу.	Всего	аудиторні	
	Турбулентность Лоренца, хаос Помо-Манневилля, хаос	1	1	0
	Рюэля-Таккенса-Ньюхауза. Теория точечных отображений.	Онлай		
	Хаос Фейгенбаума. Универсальность Фейгенбаума.	0	0	0

	Пространственно-временной хаос.			
9-12	Второй раздел	4	4	0
9 - 10	Волны и структуры в активных средах.	Всего аудиторных час		
	Волны переключения и заселения в простых бистабильных	2	2	0
	средах. Общие свойства структур в простых бистабильных	Онлайн	Ŧ	
	средах. Бегущие импульсы в возбудимых средах.	0	0	0
	Периодические воздействия на автоколебательные			
	системы. Синхронизация и хаотизация автоколебаний.			
	Автоволны горения. Модель волны переброса.			
	Автоволны в модели Фитц Хью-Нагумо.			
11 - 12	Случайность и необходимость.	Всего аудиторных часов		
	Модель броуновского движения. Модель случайного	2	2	0
	блуждания и соответствующее кинетическое уравнения.	Онлайн	Ŧ	
	Уравнение Ланжевена. Уравнение Фоккера-Планка.	0	0	0
	Некоторые свойства и стационарные решения уравнения			
	Фоккера-Планка. Зависящее от времени решение			
	уравнения Фоккера-Планка.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование	
чение		
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ СЕМИНАРОВ

Недели	Темы занятий / Содержание		
	8 Семестр		
1	Введение. Основные понятия синергетики.		
	Синергетика как новое мировоззрение. Консервативные и		
	диссипативные системы. Механическое и		
	термодинамическое равновесие. Нелинейность и обратные		
	связи. Энтропия и хаос. Процессы самоорганизации.		
	Пространственные и пространственно-временные		
	структуры. Уравнения эволюции. Устойчивость и		
	бифуркации.		
2	Термодинамический анализ нелинейных систем.		
	Открытые системы в условиях механического равновесия.		
	Стационарные неравновесные состояния. Теорема о		
	минимальном производстве энтропии. Невозможность		
	упорядоченного поведения в области линейности		
	необратимых процессов. Общий критерий эволюции для		
	равновесных и неравновесных систем.		

2	TI
3	Нелинейные дифференциальные уравнения.
	Системы нелинейных уравнений с одной и двумя
	степенями свободы, автономные системы. Анализ
	фазовых траекторий этих систем. Классификация особых
	точек: простые особые точки (центр, узел, фокус, седловая
	точка) и множественные седловые точки. Предельные
	циклы.
4	Основы теории устойчивости и бифуркаций
	нелинейных дифференциальных уравнений.
	Устойчивость по Лагранжу, Пуассону и Ляпунову.
	Линейный анализ устойчивости. Теория катастроф.
	Бифуркации в простой диссипативной системе.
	Бифуркация Хопфа и предельные циклы.
5 - 7	Исследование конкретных нелинейных процессов
	Статические неустойчивости - переход системы в новое
	состояние. Бистабильность. Автоколебания в
	электрической цепи. Химические осцилляции - реакция
	Белоусова-Жаботинского. Математический маятник.
	Модель хищник-жертва.
	Теория тепловой конвекции. Условие механического
	равновесия жидкостей и газов в гравитационном поле
	Земли. Адиабатические температуры и механическое
	равновесие.
	Уравнения свободной конвекции. Числа Рэлея и Прандтля.
	Конвекция Рэлея-Бенара. Модель конвекции Лоренца.
	Критическое число Рэлея. Ячейки Бенара. Турбулизация
	конвекции при больших числах Рэлея.
	Конвекция вещества в верхней мантии Земли. Связь
	между конвективными процессами в верхней мантии
	Земли и глобальной тектоникой плит земной коры. Оценка
	скорости перемещения плит.
8	Типичные сценарии перехода к хаосу.
	Турбулентность Лоренца, хаос Помо-Манневилля, хаос
	Рюэля-Таккенса-Ньюхауза. Теория точечных
	отображений. Хаос Фейгенбаума. Универсальность
	Фейгенбаума. Пространственно-временной хаос.
9 - 10	Волны и структуры в активных средах.
	Волны переключения и заселения в простых
	бистабильных средах. Общие свойства структур в простых
	бистабильных средах. Бегущие импульсы в возбудимых
	средах.
	Периодические воздействия на автоколебательные
	системы. Синхронизация и хаотизация автоколебаний.
	Автоволны горения. Модель волны переброса.
	Автоволны в модели Фитц Хью-Нагумо.
11 - 12	Случайность и необходимость.
	Модель броуновского движения. Модель случайного
	блуждания и соответствующее кинетическое уравнения.
	Уравнение Ланжевена. Уравнение Фоккера-Планка.
	Некоторые свойства и стационарные решения уравнения
	Фоккера-Планка. Зависящее от времени решение
	уравнения Фоккера-Планка.
	*

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Образовательные технологии являются стандартными

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ОПК-2	3-ОПК-2	Э, ДЗ-12
	У-ОПК-2	Э, ДЗ-12
	В-ОПК-2	Э, ДЗ-12
ПК-10	3-ПК-10	Э
	У-ПК-10	Э
	В-ПК-10	Э
ПК-4.2	3-ПК-4.2	Э, ДЗ-12
	У-ПК-4.2	Э, ДЗ-12
	В-ПК-4.2	Э, Т-8, ДЗ-12
ПК-5	3-ПК-5	Э, Т-8, ДЗ-12
	У-ПК-5	Э, Т-8, ДЗ-12
	В-ПК-5	Э, Т-8, ДЗ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает

		D	материал, грамотно и по существу
70-74			излагает его, не допуская
/0-/-			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
		Е	выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»		неточности, недостаточно правильные
	"yooonemoopumenono"		формулировки, нарушения
			логической последовательности в
			изложении программного материала.
		F	Оценка «неудовлетворительно»
	2 — «неудовлетворительно»		выставляется студенту, который не
			знает значительной части
			программного материала, допускает
**			существенные ошибки. Как правило,
Ниже 60			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 536 М19 Математические основы синергетики : хаос, структуры, вычислительный эксперимент , Москва: Либроком, 2012
- 2. ЭИ А 95 Структуры и хаос в нелинейных средах:, Москва: Физматлит, 2007
- 3. 53 М19 Нелинейная динамика : подходы, результаты, надежды, Г. Г. Малинецкий, А. Б. Потапов, А. В. Подлазов, Москва: Либроком, 2011

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 53 Л79 Введение в синергетику:, А.Ю. Лоскутов, А.С. Михайлов, Москва: Наука, 1990
- 2. 53 3-36 Введение в нелинейную физику : от маятника до турбулентности и хаоса, Г. М. Заславский, Р. З. Сагдеев, Москва: Наука, 1988
- 3. 53 М19 Хаос. Структуры. Вычислительный эксперимент : введение в нелинейную динамику, Г.Г. Малинецкий, Москва: Эдиториал УРСС, 2000
- 4. 531 М19 Современные проблемы нелинейной динамики : , Г.Г. Малинецкий, А.Б. Потапов, М.: УРСС, 2002
- 5. 536 Т77 Введение в синергетику. Хаос и структуры : , Д. И. Трубецков, Москва: Едиториал УРСС, 2010

- 6. 531 П75 Неравновесная статистическая механика: , И. Пригожин, Москва: Либроком, 2009
- 7. 536 Р33 Режимы с обострением. Эволюция идеи : , ред. : Г. Г. Малинецкий, Москва: Физматлит, 2006
- 8. 53 С87 Структуры и хаос в нелинейных средах : , Т. С. Ахромеева [и др.], Москва: Физматлит, 2007
- 9. 536 X16 Синергетика : Иерархии неустойчивостей в самоорганизующихся системах и устройствах, Хакен Г.;Пер.с англ., М.: Мир, 1985

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Особенности курса:

Целью освоения учебной дисциплины «Математические основания синергетики: колебания и волны, хаос и структуры» является изучение современных и классических методов применения интегральных уравнений для решения задач прикладной и математической физики.

Основными целями освоения дисциплины являются:

- получить представление о современных проблемах нелинейной физики;
- освоить математический и понятийный аппарат синергетики;
- научиться применять полученные знания при решении задач прикладной физики.

2. Структура лекционного курса

Курс разделен на два основных части. Первый раздел связан с введением в предмет, основными понятиями синергетики, математическими основами теории устойчивости и бифуркации нелинейных уравнений, исследованию ряда конкретных нелинейных процессов. Другая часть курса связана с исследованием возникновения хаоса, сценариев возникновения хаоса, нелинейных волновых явлений в активных средах и возникновения упорядоченных структур.

3. Проведение семинарских занятий и выполнение самостоятельных работ

В рамках курса не предусмотрено проведение семинарских занятий. Поэтому занятия разбиваются на две части, в первой из которой излагается теоретический материал, а во второй рассматриваются и решаются примеры и задачи, как правило, прикладного характера.

Студенты должны, используя прослушанный на лекциях материал, научиться решать конкретные прикладные задачи, связанные с применением синергетических методов.

4. Организация контроля

Самостоятельные работы выполняются во время занятий в течение семестра. Каждому студенту выдается один из вариантов самостоятельной работы. Сданные самостоятельные работы проверяются преподавателем с выставлением оценок, учитываемых в конце семестра при проставлении итоговой оценки.

Получение положительной оценки по каждой самостоятельной работе является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра.

5. Проведение промежуточной аттестации.

Для допуска к промежуточной аттестации необходимо выполнить с положительными оценками все проведенные в течение семестра самостоятельные работы и домашнее задание. При условии сдачи с положительными оценками всех работ студент отвечает на теоретические вопросы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Особенности курса:

Целью освоения учебной дисциплины «Математические основания синергетики: колебания и волны, хаос и структуры» является изучение современных и классических методов применения интегральных уравнений для решения задач прикладной и математической физики.

Основными целями освоения дисциплины являются:

- получить представление о современных проблемах нелинейной физики;
- освоить математический и понятийный аппарат синергетики;
- научиться применять полученные знания при решении задач прикладной физики.

2. Структура лекционного курса

Курс разделен на два основных части. Первый раздел связан с введением в предмет, основными понятиями синергетики, математическими основами теории устойчивости и бифуркации нелинейных уравнений, исследованию ряда конкретных нелинейных процессов. Другая часть курса связана с исследованием возникновения хаоса, сценариев возникновения хаоса, нелинейных волновых явлений в активных средах и возникновения упорядоченных структур.

3. Проведение семинарских занятий и выполнение самостоятельных работ

В рамках курса не предусмотрено проведение семинарских занятий. Поэтому занятия разбиваются на две части, в первой из которой излагается теоретический материал, а во второй рассматриваются и решаются примеры и задачи, как правило, прикладного характера. Студенты должны, используя прослушанный на лекциях материал, научиться решать конкретные прикладные задачи, связанные с применением синергетических методов.

4. Организация контроля

Самостоятельные работы выполняются во время занятий в течение семестра. Каждому студенту выдается один из вариантов самостоятельной работы. Сданные самостоятельные работы проверяются преподавателем с выставлением оценок, учитываемых в конце семестра при проставлении итоговой оценки.

Получение положительной оценки по каждой самостоятельной работе является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра.

5. Проведение промежуточной аттестации.

Для допуска к промежуточной аттестации необходимо выполнить с положительными оценками все проведенные в течение семестра самостоятельные работы и домашнее задание. При условии сдачи с положительными оценками всех работ студент отвечает на теоретические вопросы.

Автор(ы):

Ионов Андрей Михайлович