Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ БИОМЕДИЦИНЫ КАФЕДРА ПОЛУПРОВОДНИКОВОЙ КВАНТОВОЙ ЭЛЕКТРОНИКИ И БИОФОТОНИКИ

ОДОБРЕНО НТС ИФИБ

Протокол № 3.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВЫ И ПРИМЕНЕНИЕ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ

Направление подготовки (специальность)

[1] 03.03.02 Физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	2	72	32	32	0		8	0	3
Итого	2	72	32	32	0	0	8	0	

АННОТАЦИЯ

Дисциплина является частью профессионального модуля образовательной программы. По результатам освоения дисциплины студент получит представление о принципах действия ускорительной техники, типах ускорителей, сущности явлений автофазировки и фокусировки, основных уравнениях, моделях и расчетных соотношениях, описывающих и характеризующих процесс радиационного торможения частиц в ускорителях, теории и свойствах синхротронного излучения, устройстве и применении лазеров на свободных электронах.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В курсе дается систематическое изложение теории и эксперимента синхротронного излучения. Даются основные соотношения для движения электрона в ускорителе, выводятся свойства синхротронного излучения — спектр, угловое распределение мощности излучения, поляризация, когерентность, обсуждаются экспериментальные аспекты наблюдения и использования. На примере существующих установок обсуждаются возможности применения синхротронного излучения для спектроскопических исследований твердых тел. Даны основы лазеров на свободных электронах. С физической точки зрения определяются сравнительные возможности этих технологий и их перспективы.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

При освоении дисциплины используются понятия из разделов уравнения математической физики, теория поля, квантовая механика, атомная физика, спектроскопия, физика твердого тела, электротехника и электроника. Овладение данной дисциплиной необходимо выпускникам для следующих областей профессиональной деятельности по исследованию и разработке:

- установок и систем в области биомедицины;
- установок и систем лазерной обработки материалов;
- структурных и спектроскопических свойств новых и разрабатываемых материалов;
- методов повышения безопасности высокотехнолгичных установок, материалов и технологий;
- биомединских установок и технологий, обладающих высокой эффективностью, безопасностью и защищенностью.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

профессиональной деятельности (ЗПД)	область знания	профессиональной компетенции;	индикатора достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
		опыта)	
	_	сследовательский	Э ПИ 1[1]
освоение методов, а	биологические	ПК-1 [1] - Способен	3-ПК-1[1] - знать
также теорий и	объекты	использовать	основные физические
моделей,	различной	профессиональные	явления,
используемых в	организации,	знания и умения,	фундаментальные
научных исследований	источники	полученные при	понятия, законы и
	ионизирующих	освоении профильных	теории физики,
	излучений	физических дисциплин	основные методы
		0	теоретического и
		Основание: Профессиональный	экспериментального
		стандарт: 40.011	исследования, методы
		Стандарт. 40.011	измерения различных физических величин;
			У-ПК-1[1] - уметь
			разбираться в
			физических
			принципах,
			используемых в
			изучаемых
			специальных
			дисциплинах, решать
			физические задачи
			применительно к
			изучаемым
			специальным
			дисциплинам и
			прикладным
			проблемам будущей
			специальности;
			В-ПК-1[1] - владеть
			методами проведения
			физических измерений
			с оценкой
			погрешностей, а также
			методами физического
			описания типовых
			профессиональных
			задач и интерпретации
			полученных
			результатов
поиск научной	отечественные и	ПК-3 [1] - Способен	3-ПК-3[1] - знать
литературы по теме	зарубежные	проводить сбор,	основные
исследования	источники	обработку, анализ и	методологические
	литературы	обобщение научно-	теории и принципы
		технической	современной науки,
		информации,	логические методы и

передового приемы научного отечественного и исследования, зарубежного опыта по информационные тематике исследования; источники поиска, способен к подготовке сбора, обработки, обзоров на основе анализа и изучения и анализа систематизации полученной информации по теме информации и исследования; собственного У-ПК-3[1] - уметь профессионального осуществлять сбор и опыта анализ научнотехнической Основание: информации, Профессиональный полученной из стандарт: 40.011 отечественных и зарубежных источников и литературы; В-ПК-3[1] - владеть методами научного поиска и интеллектуального анализа научнотехнической информации, полученной из отечественных и зарубежных источников при решении задач

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин		
воспитания				
Профессиональное	Создание условий,	1.Использование воспитательного		
воспитание	обеспечивающих,	потенциала дисциплин		
	формирование чувства	профессионального модуля для		
	личной ответственности	формирования чувства личной		
	за научно-	ответственности за достижение		
	технологическое развитие	лидерства России в ведущих научно-		
	России, за результаты	технических секторах и		
	исследований и их	фундаментальных исследованиях,		
	последствия (В17)	обеспечивающих ее экономическое		
		развитие и внешнюю безопасность,		
		посредством контекстного обучения,		
		обсуждения социальной и практической		
		значимости результатов научных		
		исследований и технологических		
		разработок. 2.Использование		
		воспитательного потенциала дисциплин		

		профессионального модуля для
		формирования социальной
		ответственности ученого за результаты
		исследований и их последствия,
		развития исследовательских качеств
		посредством выполнения учебно-
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов, критический
		анализ публикаций в профессиональной
		области, вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин «Введение в
	формирование культуры	специальность», «Основы и применение
	радиационной	синхротронного излучения», «Физика
	безопасности при	биологического действия радиации» и
	медицинском	всех видов практик – ознакомительной,
	использовании	научно-исследовательской,
	источников	педагогической, преддипломной для: -
	ионизирующего и	формирования культуры работы с
	неионизирующего	патогенами, обеспечивающей
	излучения (В30)	безопасность и не распространение,
	, ,	приборами дозиметрического контроля,
		радиационной и экологической
		безопасности посредством
		тематического акцентирования в
		содержании дисциплин и учебных
		заданий, подготовки эссе, рефератов,
		дискуссий по вопросам
		биобезопасности 2.Использование
		воспитательного потенциала дисциплин
		"Медицинские установки и детекторы
		излучений", "Рентгеновская
		компьютерная томография", "Основы
		МРТ", "Основы ПЭТ", "Основы
		интроскопии", "Радиационная физика",
		"Дозиметрическое планирование
		лучевой терапии", "Магнитно-
		резонансная томография", "Позитрон-
		эмиссионная томография", "Ядерная
		медицина", "Физика радиоизотопной
		медицина", Физика радиоизотопной медицины" и всех видов практик для:
		- формирования культуры
		радиационной безопасности, в том
		числе при получении практических
		навыков посредством тематического
		-
		акцентирования в содержании
		дисциплин и учебных заданий,
		подготовки эссе, рефератов, дискуссий,
		а также в ходе практической работы с

терапевтическим и диагностическим оборудованием. 3.Использование воспитательного потенциала дисциплин «Проектирование компьютерных медицинских систем»; «Системы обработки изображений в медицине»; «Анализ экспериментальных данных»; «Искусственный интеллект в медицине» для - формирования сознательного отношения к нормам и правилам цифрового поведения посредством выполнения индивидуальных заданий, связанных с вовлечением передовых цифровых технологий через обсуждение на еженедельном семинаре в научном коллективе. 5.Использование воспитательного потенциала профильных дисциплин и всех видов практик для: - формирования этических основ проведения экспериментов с использованием лабораторных животных посредством обсуждения техники безопасной работы с высокотехнологичным экспериментальным оборудованием, высокопроизводительной вычислительной техникой и с живыми системами.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	5 Семестр						
1	Часть 1	1-8	16/16/0		25	КИ-8	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3
2	Часть 2	9-16	16/16/0		25	КИ-16	3-ПК-1,

			У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3
Итого за 5 Семестр	32/32/0	50	
Контрольные мероприятия за 5 Семестр		50	3 3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	5 Семестр	32	32	0	
1-8	Часть 1	16	16	0	
1	Введение	Всего а	Всего аудиторных часов		
	Введение. Исторический обзор. Определение	2	2	0	
	синхротронного излучения как магнито-тормозного	Онлайн	I		
	излучения и его свойства. Источники синхротронного	0	0	0	
	излучения. Основные применения.				
2	Теория синхротронного излучения	Всего а	удиторных	часов	
	Теория синхротронного излучения. Релятивистский	2	2	0	
	электрон. Уравнения Максвелла-Лоренца и уравнение	Онлайн	I		
	движения электрона в 4-х мерном пространстве. Границы	0	0	0	
	применимости классической электродинамики.				
3	Свойства синхротронного излучения	Всего а	удиторных	часов	
	Свойства синхротронного излучения. Радиационный	2	2	0	
	предел ускорения. Мощность синхротронного излучения.	Онлайн	I		
	Спектрально-угловое распределение мощности	0	0	0	
	синхротронного излучения.				
4	Поляризационные свойства	Всего а	удиторных	часов	
	Поляризационные свойства. Особенности углового	2	2	0	
	распределения мощности синхротронного излучения.	Онлайн	I		
	Когерентность синхротронного излучения.	0	0	0	
5	Устройства и принципы действия ускорительной	Всего а	удиторных	часов	
	техники	2	2	0	
	Устройства и принципы действия ускорительной техники.	Онлайн	I		

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	TT - TT	0	0	0
	Линейные ускорители. Циклические ускорители.	0	0	0
	Ондуляторы. Синхротрон. Накопительные кольца.	D		
6	Экспериментальное наблюдение синхротронного		аудиторных	
	излучения	2	2	0
	Экспериментальное наблюдение синхротронного	Онлайі		T
	излучения. Первые эксперименты по наблюдению	0	0	0
	«светящегося» электрона. Экспериментальное			
	исследование спектрально-угловых характеристик и			
	поляризации синхротронного излучения.			
7	Динамика движения электронов в синхротронах	Всего а	аудиторных	часов
	Динамика движения электронов в синхротронах.	2	2	0
	Уравнение движение электронов по окружности в МП.	Онлайн	H	
	Бетатронные колебания. Принципы автофазировки.	0	0	0
	Условия фокусировки.			
8	Влияние излучения на движение электронов в	Всего а	аудиторных	х часов
	ускорителях и накопительных кольцах	2	2	0
	Влияние излучения на движение электронов в ускорителях	Онлайі	H	•
	и накопительных кольцах. Экспериментальное	0	0	0
	исследование влияния СИ на движение электронов в			
	циклическом ускорителе. Квантовые эффекты при			
	движении релятивистского электрона.			
9-16	Часть 2	16	16	0
9	Каналы синхротронного излучения	Всего а	аудиторных	часов
	Каналы синхротронного излучения. Экспериментальные	3	3	0
	установки в каналах синхротронного излучения.	Онлайі	<u> </u>	1 -
	Установка С-60 в Физическом институте им. П.Н.	0	0	0
	Лебедева РАН.			
10	Свойства ондуляторного излучения	Всего а	цудиторных 1	часов
	Свойства ондуляторного излучения. Экспериментальное	3	3	0
	исследование свойств ондуляторного излучения.	Онлайн	_	10
	Сравнительная характеристика синхротронного и	0	0	0
	ондуляторного излучений.	0		
11	Применение синхротронного и ондуляторного	Всего	ц аудиторных	Uacor
11	излучения	3	тудиторны <i>л</i> З	0
	Применение синхротронного и ондуляторного излучения.	Онлайн	-	10
	Свойства важные для применения. Методы спектроскопии	0		0
	в синхротронном излучении. Спектроскопия атомов и	0	0	0
	молекул. Спектроскопия твердого тела. Люминесценция			
İ	кристаллов при возбуждении синхротронным излучением.			
12 15		Doors	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ H0225
12 - 15	Устройство усилителей и лазеров на свободных	-	аудиторных Г	1
	электронах	7	7	0
	Устройство усилителей и лазеров на свободных	Онлай		
	электронах. Инверсная населенность и индуцированное	0	0	0
	излучение применительно к лазерам на свободных			
	электронах. Свойства излучения лазеров на свободных			
	электронах. Применение лазеров на свободных			
	электронах.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс

ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций и практических занятий, а также самостоятельная работа студентов, заключающаяся в изучении пройденного материала и подготовке домашнего задания. Для того чтобы дать современное состояние физики и эксперимента синхротронного излучения, предусмотрено широкое использование современных научных работ и публикаций по данной теме. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в НИЯУ МИФИ, ФИАН, и других организациях.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	3, КИ-8, КИ-16
	У-ПК-1	3, КИ-8, КИ-16
	В-ПК-1	3, КИ-8, КИ-16
ПК-3	3-ПК-3	3, КИ-8, КИ-16
	У-ПК-3	3, КИ-8, КИ-16
	В-ПК-3	3, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 – «отлично»	A	Оценка «отлично» выставляется студенту,

		I	~
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70 01	4 – « <i>xopowo</i> »		по существу излагает его, не допуская
70-74	1	D	существенных неточностей в ответе на
, , , ,			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- $1.548~\Phi45~$ Синхротронное излучение. Методы исследования структуры веществ : учебное пособие для вузов, Фетисов Г.В., Москва: Физматлит, 2007
- 2.539.1~A86~Cинхротронное излучение. Некоторые применения в материаловедении Ч.1 , Артемьев А.Н., М.: МИФИ, 1998
- 3. ЭИ Γ 42 Теория поля : учебник для бакалавров, Дергачев Н. И., Гершанок В. А., Москва: Юрайт, 2022
- $4.621.38\ Д55\ Ускорители$ заряженных частиц в экспериментальной физике высоких энергий : текст лекций, Добрецов Ю.П., Москва: МИФИ, 2008
- 5. 621.38 П22 Физика пучка в кольцевых ускорителях : учеб. пособие для вузов, Пашков П.Т., Москва: Физматлит, 2006
- 6. 621.38 Ф 50 Физика пучков заряженных частиц и ускорительная техника. Высокочастотные дефлекторы. : учеб. пособие для вузов, Собенин Н.П. [и др.], Москва: Юрайт, 2019

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. H L47 Accelerator physics: , Lee S.Y., New Jersey [and oth.]: World scientific, 2012
- 2. 621.38 И88 Введение в физику ускорителей заряженных частиц: курс лекций, Иссинский И.Б., Дубна: ОИЯИ, 2012
- 3. 537 Т35 Синхротронное излучение и его применение : Учеб. пособие для вузов, Халилов В.Р., Тернов И.М., Михайлин В.В., М.: МГУ, 1985
- 4. 621.38 В16 Современные синхротроны : Учеб. пособие, Глазков А.А., Вальднер О.А., М.: МИФИ, 1990

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Комплекс дисциплины предполагает ряд основных видов работы:

- аудиторная работа в виде лекций и практических занятий,
- самостоятельная работа,
- выполнение контрольных работ.

Перечисленные виды работы составляют целостную систему обучения, обеспечивающую разностороннюю подготовку обучащегося и призваны к приобретению новых компетенций и повышению уровня его компетентности.

Структура курса предполагает освоение каждой предлагаемой темы в несколько этапов.

Проводятся практические занятия, на которых в форме "круглого стола" обсуждаются предалагаемые темы, проверяется подготовленность к занятиям. Также предполагается самостоятельная работа студента по предложенным темам с последующим контролем со стороны преподавателя.

Текущий контроль: в течение семестра выполняются следующие контрольных мероприятий:

- оценка участия в практических занятиях;
- выполнение контрольных работ.

Результаты выполнения контрольных мероприятий являются основанием для допуска к промежуточному контролю по дисциплине.

Промежуточный контроль осуществляется в виде ответа на вопросы.

Система оценки успеваемости студента

Для оценки успеваемости студента применяется 100-балльная система, которая позволяет учитывать работу студента в течение семестра и прохождение аттестации.

Учебная работа студента в семестре оценивается по следующим категориям: показатели посещаемости и эффективности работы на каждом занятии, результаты выполнения контрольных мероприятий.

Максимальное количество баллов, которое студент может получить в ходе аудиторной и самостоятельной работы в семестре, составляет 50 баллов.

Минимальное количество баллов, которое необходимо для допуска студента к промежуточной аттестации, составляет 30 баллов.

По итогам семестра проводится промежуточная аттестация.

В совокупности за промежуточную аттестацию студент может получить 50 баллов.

Итого, максимальная оценка по курсу по итогам семестра составляет 100 баллов, для аттестации по курсу необходимо набрать минимум 60 баллов.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Комплекс дисциплины предполагает ряд основных видов работы:

- аудиторная работа в виде лекций и практических занятий,
- самостоятельная работа,
- выполнение контрольных работ.

Перечисленные виды работы составляют целостную систему обучения, обеспечивающую разностороннюю подготовку обучащегося и призваны к приобретению новых компетенций и повышению уровня его компетентности.

Структура курса предполагает освоение каждой предлагаемой темы в несколько этапов.

Проводятся практические занятия, на которых в форме "круглого стола" обсуждаются предалагаемые темы, проверяется подготовленность к занятиям. Также предполагается самостоятельная работа студента по предложенным темам с последующим контролем со стороны преподавателя.

Текущий контроль: в течение семестра выполняются следующие контрольных мероприятий:

- оценка участия в практических занятиях;
- выполнение контрольных работ.

Результаты выполнения контрольных мероприятий являются основанием для допуска к промежуточному контролю по дисциплине.

Промежуточный контроль осуществляется в виде ответа на вопросы.

Система оценки успеваемости студента

Для оценки успеваемости студента применяется 100-балльная система, которая позволяет учитывать работу студента в течение семестра и прохождение аттестации.

Учебная работа студента в семестре оценивается по следующим категориям: показатели посещаемости и эффективности работы на каждом занятии, результаты выполнения контрольных мероприятий.

Максимальное количество баллов, которое студент может получить в ходе аудиторной и самостоятельной работы в семестре, составляет 50 баллов.

Минимальное количество баллов, которое необходимо для допуска студента к промежуточной аттестации, составляет 30 баллов.

По итогам семестра проводится промежуточная аттестация.

В совокупности за промежуточную аттестацию студент может получить 50 баллов.

Итого, максимальная оценка по курсу по итогам семестра составляет 100 баллов, для аттестации по курсу необходимо набрать минимум 60 баллов.

Автор(ы):

Завестовская Ирина Николаевна, д.ф.-м.н., с.н.с.