Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА ВЗАИМОДЕЙСТВИЙ ТЯЖЕЛЫХ ЯДЕР

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	3	108	32	32	0		44	0	30
Итого	3	108	32	32	0	0	44	0	

АННОТАЦИЯ

Курс является дополнением к основному курсу - экспериментальные методы ядерной физики, позволяет получить знания в области физики тяжелых ионов, синтеза новых элементов, современных методах исследований ядерных реакций, в том числе, приводящих к образованию ядерной материи в экзотических состояниях.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является получение представления об одном из современных направлений ядерной физики — физики тяжелых ионов, синтеза новых элементов, современных методах исследований ядерных реакций, в том числе, приводящих к образованию ядерной материи в экзотических состояниях.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Логически и содержательно – методически дисциплина является частью специализации, являющейся неотьемлемой частью знаний физика — экспериментатора в области экспериментальной ядерной физики и физики частиц.

Для освоения данной дисциплины необходимо предшествующее освоение курсов общей, ядерной и теоретической физики.

В настоящее время, наряду с базовой подготовкой студентов по данному направлению в сфере компетенций физика — экспериментатора, большое значение умение самостоятельно планировать и выполнять весь комплекс научно-исследовательских работ с учетом современных требований и на современном уровне. Для этого магистр - экспериментатор должен обладать разносторонними навыками и широким кругозором, уметь ориентироваться в системе поддержки НИР, уметь видеть задачу в комплексе для того, чтобы при необходимости обеспечить инновационный переход от НИР к ОКР и внедрению результатов НИР в сферу хозяйственного оборота. Таким образом, настоящий курс является весьма важной частью подготовки физика-экспериментатора.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции

стандарт-ПС, анализ опыта)

научно-исследовательский

1 Разработка методов регистрации ионизирующих и электромагнитных излучений; создание теоретических моделей состояния вещества, взаимодействия лазерного и ионизирующего излучения с веществом; создание математических моделей, описывающих процессы в ядерных реакторах, ускорителях, коллайдерах, массспектрометрах; создание методов расчета разделения изотопных и молекулярных смесей; создание современных электронных устройств сбора и обработки информации, учета воздействия на эти устройства ионизирующего и электромагнитного излучений; разработка методов повышения безопасности ядерных и лазерных установок, материалов и технологий; разработка теоретических моделей прохождения излучения через

вещество,

1 Современный ядерно-физический эксперимент, современные электронные системы сбора и обработки данных для ядерных и физических установок математические модели для теоретического и экспериментального исследований фундаментальных взаимодействий элементарных частиц и атомных ядер и их излучений

ПК-3.1 [1] - Способен работать с детекторами и физическими установками в области физики ядра и элементарных частиц, над их разработкой и оптимизацией, в том числе – к работе над их модернизацией

Основание: Профессиональный стандарт: 40.011 3-ПК-3.1[1] - Знать методы регистрации ионизирующих и электромагнитных излучений и методы измерения количественных характеристик ядерных материалов; методы расчета современных электронных устройств, учета воздействия на эти устройства ионизирующего и электромагнитного излучения;; У-ПК-3.1[1] - Уметь планировать и организовывать современный физический эксперимент, проводить проектирование и оптимизацию детекторов и установок в области физики ядра, физики элементарных частиц и астрофизики; В-ПК-3.1[1] -Владеть методами разработки новых и модернизации существующих детекторов и установок для научноинновационных исследований в области физики ядра, физики элементарных частиц и астрофизики.

воздействия			
ионизирующего,			
лазерного и			
электромагнитного			
излучений на			
человека и объекты			
окружающей среды	1.0	HIC 2 [1] C ~ ~	D HIC 2013 D
1 Разработка методов	1 Современный	ПК-3 [1] - Способен	3-ПК-3[1] - Знать
регистрации	ядерно-физический	оценивать	достижения научно-
ионизирующих и	эксперимент,	перспективы развития	технического
электромагнитных излучений; создание	современные электронные системы	атомной отрасли, использовать ее	прогресса; У-ПК-3[1] - Уметь
теоретических	сбора и обработки	современные	применять
моделей состояния	данных для ядерных и	достижения и	полученные знания к
вещества,	физических установок	передовые технологии	решению
взаимодействия	математические	в научно-	практических задач.;
лазерного и	модели для	исследовательской	В-ПК-3[1] - владеть
ионизирующего	теоретического и	деятельности	методами
излучения с	экспериментального		моделирования
веществом; создание	исследований	Основание:	физических
математических	фундаментальных	Профессиональный	процессов.
моделей,	взаимодействий	стандарт: 40.011	_
описывающих	элементарных частиц		
процессы в ядерных	и атомных ядер и их		
реакторах,	излучений		
ускорителях,			
коллайдерах, масс-			
спектрометрах;			
создание методов			
расчета разделения			
изотопных и			
молекулярных смесей; создание			
современных			
электронных			
устройств сбора и			
обработки			
информации, учета			
воздействия на эти			
устройства			
ионизирующего и			
электромагнитного			
излучений;			
разработка методов			
повышения			
безопасности			
ядерных и лазерных			
установок,			
материалов и			
технологий;			
разработка			
теоретических			

моделей прохождения излучения через вещество, воздействия ионизирующего, лазерного и электромагнитного излучений на человека и объекты окружающей среды 1 Разработка методов регистрации	1 Современный ядерно-физический	ПК-4 [1] - Способен самостоятельно	3-ПК-4[1] - Знать: цели и задачи
ионизирующих и электромагнитных излучений; создание теоретических моделей состояния вещества, взаимодействия лазерного и ионизирующего излучения с веществом; создание математических моделей, описывающих процессы в ядерных реакторах, ускорителях, коллайдерах, массспектрометрах; создание методов расчета разделения изотопных и молекулярных смесей; создание современных электронных устройств сбора и обработки информации, учета воздействия на эти устройства	эксперимент, современные электронные системы сбора и обработки данных для ядерных и физических установок математические модели для теоретического и экспериментального исследований фундаментальных взаимодействий элементарных частиц и атомных ядер и их излучений	выполнять экспериментальные и теоретические исследования для решения научных и производственных задач Основание: Профессиональный стандарт: 40.011	проводимых исследований; основные методы и средства проведения экспериментальных и теоретических исследований; методы и средства математической обработки результатов экспериментальных данных; У-ПК-4[1] - Уметь: применять методы проведения экспериментов; использовать математические методы обработки результатов исследований и их обобщения; оформлять результаты научноисследовательских работ; В-ПК-4[1] - Владеть: навыками самостоятельного выполнения
ионизирующего и электромагнитного излучений; разработка методов повышения безопасности ядерных и лазерных установок,			экспериментальных и теоретических исследования для решения научных и производственных задач

материалов и		
технологий;		
разработка		
теоретических		
моделей		
прохождения		
излучения через		
вещество,		
воздействия		
ионизирующего,		
лазерного и		
электромагнитного		
излучений на		
человека и объекты		
окружающей среды		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	3 Семестр						
1	Часть 1	1-8	16/16/0		25	КИ-8	3-ПК-3, У-ПК-3, В-ПК-3, 3-ПК-3.1, У-ПК-3.1, В-ПК-3.1
2	Часть 2	9-16	16/16/0		25	КИ-16	3-ПК-4, У-ПК-4, В-ПК-4
	Итого за 3 Семестр		32/32/0		50		
	Контрольные мероприятия за 3 Семестр				50	30	3-ПК-3, У-ПК-3, В-ПК-3, 3-ПК-3.1, У-ПК-3.1, В-ПК-4, У-ПК-4, В-ПК-4

^{* –} сокращенное наименование формы контроля

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
3O	Зачет с оценкой
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	3 Семестр	32	32	0
1-8	Часть 1	16	16	0
1	Тема1	Всего а	удиторных	часов
	Взаимодействие сложных ядер. Особенности реакций с	2	2	0
	тяжелыми ионами. Классификация реакций с тяжелыми	Онлайн	I	
	ионами (ТИ). Модели взаимодействия иона с ядром.	0	0	0
2	Тема2	Всего а	удиторных	часов
	Экспериментальные методы исследования реакций с	2	2	0
	тяжелыми ионами. Особенности регистрации ионов	Онлайн	I	
	ионизационными детекторами. Трековые детекторы в	0	0	0
	заделах поиска редких событий.			
3	Тема3	Всего а	удиторных	часов
	Современные ускорители ТИ, ускорение радиоактивных	2	2	0
	ядер. Многодетекторные спектрометры для исследования	Онлайн	I	
	ядерных реакций.	0	0	0
4	Тема4	Всего а	удиторных	часов
	Кулоновское возбуждение ядерных уровней т.и.	2	2	0
	Классическое рассмотрение. Каскадное кулоновское	Онлайн	I	
	возбуждение.	0	0	0
5	Тема5	Всего а	удиторных	часов
	Эффект реориентации. Упругое рассеяние ТИ на ядрах.	2	2	0
	Радужное рассеяние, glori – рассеянье.	Онлайн	I	
		0	0	0
6	Тема6	Всего а	удиторных	часов
	Спиральное рассеянье. Дифракция Френеля и	2	2	0
	Фраунгофера.	Онлайн	I	
		0	0	0
7	Тема7	Всего а	удиторных	часов
	Реакции прямого взаимодействия, передача малого числа	2	2	0
	нуклонов.	Онлайн	I	
		0	0	0
8	Тема8	Всего а	удиторных	часов
	Ядерные реакции глубоконеупругих передач.	2	2	0
		Онлайн	I	•
		0	0	0
9-16	Часть 2	16	16	0
9	Тема9		удиторных	часов
	Реакции слияния ядер. Общая характеристика. Методы	2	2	0
	определения поперечного сечения слияния.	Онлайн		

		0	0	0	
10	Тема10	Всего	аудитор	ных часов	
	Закономерности поперечного сечения слияния ядер.	2	2	0	
		Онлай	iн	•	
		0	0	0	
11	Тема11	Всего	аудитор	ных часов	
	Феноменологическое описание слияния ядер.	2	2	0	
		Онлай	iн	•	
		0	0	0	
12	Тема12	Всего	аудитор	ных часов	
	Расчеты траекторий слияния. Распад составного ядра.	2	2	0	
		Онлай	Н		
		0	0	0	
13	Тема13	Всего	его аудиторных часов		
	Деление ядер ТИ, основные представления.	2	2	0	
		Онлай	Н		
		0	0	0	
14	Тема14	Всего	аудитор	ных часов	
	Свойства осколков деления. Особенности деления ядер	2	2	0	
	ТИ. Спонтанное деление трансурановых элементов.	Онлай	ін		
	Деление высоковозбужденных ядер и ядер с большим	0	0	0	
	угловым моментом.				
15 - 16	Тема15 Подготовка к аттестации	Всего	аудитор	ных часов	
	Подготовка к аттестации - выдача вопросов и их	4	4	0	
	обсуждение	Онлай	ін		
		0	0	0	

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	3 Семестр
1 - 2	Тема 1
	Ядерные реакции с тяжелыми ионами (ТИ). Классификация реакций с тяжелыми
	ионами.
2 - 3	Тема 2
	Экспериментальные методы исследования реакций с тяжелыми ионами.
3 - 4	Тема 3
	Современные ускорители ТИ, ускорение радиоактивных ядер.

4 - 5	Тема 4
	Многодетекторные спектрометры для исследования ядерных реакций.
5 - 6	Тема 5
	Особенности реакций с тяжелыми ионами (часть1)
6 - 7	Тема 6
	Особенности реакций с тяжелыми ионами (часть2)
7 - 8	Тема 7
	Особенности реакций с тяжелыми ионами (часть3)
8	Тема 8
	Ядерные реакции глубоконеупругих передач.
9 - 10	Тема 9
	Реакции слияния ядер. Общая характеристика.
10 - 11	Тема 10
	Методы определения поперечного сечения слияния ядер.
11 - 12	Тема 11
	Деление ядер ТИ, основные представления.
12 - 13	Тема 12
	Свойства осколков деления.
13 - 14	Тема 13
	Особенности деления ядер ТИ.
14 - 15	Тема 14
	Спонтанное деление трансурановых элементов.
15 - 16	Тема 15
	Деление высоковозбужденных ядер и ядер с большим угловым моментом.
16	Тема 16
	Подготовка к итоговой аттестации

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе освоения курса, кроме лекций (презентации от лектора), используются семинары.

В процессе освоения курса на семинарах используются технологии:

- освоение современных достижений в области физики тяжелых ядер (обсуждение на основе материала лекций);
- освоение методических решений по проектированию новых ядерно-физических установок для поиска новых хим.элементов;
- оперативное решение студентами научных задач ОИЯИ (Дубна) по ходу занятия с последующим обсуждением (дискуссией);

Дополнительно используется самостоятельная внеаудиторная работа — подготовка по отдельным разделам курса на базе оригинальных научных статей.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(КП 1)	
ПК-3	3-ПК-3	3О, КИ-8	
	У-ПК-3	3О, КИ-8	
	В-ПК-3	3О, КИ-8	
ПК-3.1	3-ПК-3.1	3О, КИ-8	
	У-ПК-3.1	3О, КИ-8	
	В-ПК-3.1	3О, КИ-8	
ПК-4	3-ПК-4	3О, КИ-16	
	У-ПК-4	3О, КИ-16	
	В-ПК-4	3О, КИ-16	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется студенту,
75-84		C	если он твёрдо знает материал, грамотно и
70-74		D	по существу излагает его, не допуская
			существенных неточностей в ответе на
			вопрос.
65-69		Е	Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»		выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить

	обучение без дополнительных занятий по
	соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 539.1 В24 Введение в физику тяжелых ионов : учебное пособие для вузов, Гангрский Ю.П. [и др.], Москва: МИФИ, 2008
- 2. ЭИ К96 Методы регистрации излучений (итоговое занятие) : лабораторный практикум, Кушин В.В., Покачалов С.Г., Москва: НИЯУ МИФИ, 2015
- 3. 539.1 К96 Методы регистрации излучений (итоговое занятие) : лабораторный практикум, Кушин В.В., Покачалов С.Г., Москва: НИЯУ МИФИ, 2015

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. If L75 Understanding the universe from Quarks to the Cosmos :, Lincoln D., New Jersey [and oth]: World scientific, 2012
- 2. 621.38 И88 Введение в физику ускорителей заряженных частиц: курс лекций, Иссинский И.Б., Дубна: ОИЯИ, 2012
- 3. 001 М82 Научная сессия МИФИ-2001: Сборник научных трудов, , М.: , 2001
- 4. 621.38 K78 Новая физика на большом адронном коллайдере : , Красников Н.В., Матвеев В.А., Москва: КРАСАНД, 2011
- 5. 539.1 Б26 Основы физики атомного ядра. Ядерные технологии : , Барсуков О.А., Москва: Физматлит, 2011
- 6. 621.38 П27 Перспективные ускоряющие структуры с прецизионными параметрами : , Собенин Н.П. [и др.], Москва: НИЯУ МИФИ, 2013
- 7. 539.1 X17 Радиоактивность, ионизирующее излучение и ядерная энергетика : , Хала И., Навратил Дж. Д., Москва: URSS, 2013
- 8. 539.1 Н63 Твердотельные трековые детекторы в радиационных исследованиях : , Николаев В.А., Санкт-Петербург: Издательство Политехнического университета, 2012

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса следует прежде всего понять, что в отличие от взаимодействия однозарядных частиц с ядрами, при взаимодействии тяжелых ионов с ядрами большой электрический заряд тяжелого иона приводит к значительной энергии расталкивания ионов с ядром. Поэтому электромагнитные силы оказывают существенное влияние на вероятные пути их взаимодействия – слияние, обмен нуклонами, рассеяние.

Особенностью реакций с тяжелыми ионами является также очень высокая энергия возбуждения составного ядра, которую трудно получить в реакциях с легкими частицами. Реакции с тяжелыми ионами являются наиболее эффективным способом получения ядер, удаленных от линии стабильности, а также ядер с большими угловыми моментами.

При изучении курса следует обратить особое внимание на описание прцесс взаимодействия иона с ядром.

Далее следует изучить реакции кулоновского возбуждения ядерных уровней тяжелыми ионами и возникающие при этом эффекты, упругое рассеяние тяжелых ионов на ядрах и возникающие в этом случае эффекты радужного рассеяния и дифракционные процессы.

При изучении раздела «Реакции прямого взаимодействия» следует рассмотреть реакции передач милого числа нуклонов и реакции глубоконеупругих передач.

При изучении раздела «Реакции слияния ядер» следует изучить общие характеристики, закономерности сечения слияния и процессы распада составного ядра.

При изучении раздела «Деление ядер тяжелыми ионами» следует получить основные представления о процессе деления. Изучить свойства осколков деления. Особо следует остановиться на спонтанном делении трансурановых элементов .

Заключительной частью программы, на которой следует проявить внимательность - является синтез новых элементов в реакциях с тяжелыми ионами, обратить особое внимание на синтез элементов долгоживущих сверхтяжелых ядер.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При рассмотрении тематики в расках «Физика тяжелых ядер» следует выделить следующие аспекты курса:

- на большой кулоновский заряд ионов и, соответственно, на существенное влияние электромагнитных сил на вероятные пути их взаимодействия слияние, обмен нуклонами, рассеяние.
 - на большой угловой момент ядра при краевых столкновениях ядро-ион;
- на классификацию реакций тяжелых ионов с ядром в зависимости от параметра соударения;
 - особое внимание следует обратить на реакцию слияния ядер,

на закономерности сечения слияния, расчеты траектории слияния;

- следует подробно остановиться на основных представлениях о процессе деления, на свойствах осколков деления, на особенностях деления ядер тяжелыми ионами, на делении высоковозбужденных ядер, деление ядер с большим угловым моментом;

- особое внимание следует уделить реакциям неполного слияния, реакциях с вылетом нуклонов и кластеров.

Важной проблемой является синтез и свойства сверхтяжелых элементов. Следует подробно остановиться на реакциях синтеза, на перспективах исследований в этом направлении. Следует подробно рассмотреть эффекты ядерных оболочек в делении возбужденных ядер.

При рассмотрении тематики в рамках «Экспериментальные методы физики тяжелых ионов» следует подробно остановиться на методах измерения в полном телесном угле, на корреляционных измерениях.

Следует рассмотреть различные варианты спектрометров на оспове различных детекторах — X-лучей и гамма-квантов, различных газовых детекторов, канальных умножителей, лавинных счетчиков. Рассмотреть параметры различных детекторов для изучении в связи с их возможным применением для изучения тех или иных продуктов ядерных реакций.

В заключенительном занятии следует рассмотреть практические аспекты применения результатов физики тяжелых ионов — получение полимерных ядерных мембран, изотопов применение в нанотехнологии.

Автор(ы):

Оганесян Юрий Цолакович

Пенионжкевич Юрий Эрастович, д.ф.-м.н., профессор

Рецензент(ы):

проф. УНЦ ОИЯИ Оганесян Ю.Ц.