Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ФИЗИЧЕСКИХ ПРОБЛЕМ МАТЕРИАЛОВЕДЕНИЯ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/0821-573.1

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВЫ ТЕОРИИ ДЕФЕКТОВ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ

Направление подготовки (специальность)

[1] 22.03.01 Материаловедение и технологии материалов

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	2	72	16	16	0		13	0	Э
Итого	2	72	16	16	0	0	13	0	

АННОТАЦИЯ

В курсе изложены основы теории дефектов кристаллической структуры. Дается классификация дефектов кристаллической структуры.

Рассматриваются точечные дефекты. Излагаются представления об образовании и подвижности точечных дефектов, их отжиге; энергии образования вакансий и междоузельных атомов; искажениях кристаллической решетки; источниках и стоках точечных дефектов; комплексах точечных дефектов.

Рассматриваются линейные дефекты кристаллического строения твердых тел. Излагаются современные представления об образовании и механизмах размножения дислокаций; их движении; силах, действующих на дислокации; процессах взаимодействия между дислокациями, а также между дислокациями и точечными дефектами, дислокационных структурах.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель освоения учебной дисциплины состоит в том, чтобы перед чтением курсов, непосредственно связанных с изучением материалов, ввести студентов в основы теории дефектов кристаллической структуры.

Данный курс необходим для понимания влияния дефектов кристаллической структуры на свойства металлов, их фазовые превращения при нагреве и радиационном воздействии, изменения структуры при обработке и эксплуатации.

В задачи дисциплины входит установление зависимостей между дефектной структурой и механическими и физическими свойствами материалов

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения дисциплины необходимы компетенции, сформированные у обучающихся в результате освоения математических и физических дисциплин, химии.

Данная дисциплина является базой для изучения специальных дисциплин «Физическое материаловедение», «Функциональные и конструкционные материалы», «Реакторные материалы», «Методы исследования реакторных материалов», «Наноматериалы и нанотехнологии», «Физические свойства твердых тел», «Материалы с особыми физическими свойствами».

Знание ее содержания необходимо при выполнении работ по курсовому и дипломному проектированию, НИРС, а также при практической работе.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
участие в работе группы специалистов при выполнении экспериментов и обработке их результатов по созданию, исследованию и выбору материалов, оценке их технологических и служебных качеств путем комплексного анализа их структуры и свойств, физикомеханических, коррозионных и других испытаний	научно-исследовательскиметоды и средства испытаний и диагностики, исследования и контроля качества материалов, пленок и покрытий, полуфабрикатов, заготовок, деталей и изделий, все виды исследовательского, контрольного и испытательного оборудования, аналитической аппаратуры, компьютерное программное обеспечение для обработки результатов и анализа полученных данных, моделирования поведения материалов, оценки и прогнозирования их эксплуатационных характеристик	•	3-ПК-1[1] - знать основные методы исследования, анализа, диагностики и моделирования свойств материалов, физических и химических процессах, протекающих в материалах при их получении, обработке и модификации; ; У-ПК-1[1] - уметь использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств материалов, физических и химических процессах, протекающих в материалах при их получении, обработке и модификации; ; В-ПК-1[1] - владеть навыками
			исследования, анализа, диагностики и моделирования свойств материалов, физических и химических процессах, протекающих в

			материалах при их
			получении,
			обработке и
.5		Ш/ 1 2 [1]	модификации.
сбор данных о	основные типы	ПК-1.2 [1] - способен	3-ПК-1.2[1] - знать
существующих типах	современных	применять знания об	основные типы
и марках материалов,	конструкционных и	основных типах	современных
их структуре и	функциональных	современных	материалов, а также
свойствах	неорганических	материалов, принципах	подходы к выбору
применительно к	(металлических и	выбора материалов для	материалов для
решению	неметаллических) и	заданных условий	заданных условий
поставленных задач с	органических	эксплуатации с учетом	эксплуатации;
использованием баз	(полимерных и	требований	У-ПК-1.2[1] - уметь
данных и	углеродных)	технологичности,	выбрать материал
литературных	материалов, композитов и	экономичности,	для заданных
источников		надежности и	условий
	гибридных	долговечности,	эксплуатации; В-ПК-1.2[1] - владеть
	материалов,	экологических	
	сверхтвердых	последствий их	основными
	материалов,	применения при	подходами при выборе материалов
	интеллектуальных и	проектировании высокотехнологичных	для заданных
	наноматериалов, пленок и покрытий		условий
	пленок и покрытии	процессов	1
		Основание:	эксплуатации
		Профессиональный	
		стандарт: 40.011	
сбор данных о	основные типы	ПК-2 [1] - способен	3-ПК-2[1] - знать
существующих типах	современных	использовать на	основные
и марках материалов,	конструкционных и	практике современные	представления о
их структуре и	функциональных	представления о	структуре
свойствах	неорганических	влиянии структуры на	материалов и
применительно к	(металлических и	свойства материалов,	влиянии структуры
решению	неметаллических) и	их взаимодействии с	на свойства
поставленных задач с	органических	окружающей средой,	материалов, их
использованием баз	(полимерных и	полями, частицами и	взаимодействии с
данных и	углеродных)	излучениями	окружающей средой,
литературных	материалов,		полями, частицами и
источников	композитов и	Основание:	излучениями; ;
	гибридных	Профессиональный	У-ПК-2[1] - уметь
	материалов,	стандарт: 40.011	анализировать
	сверхтвердых	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	влияние структуры
	материалов,		материалов на их
	интеллектуальных и		свойства, а также ее
	наноматериалов,		эволюцию при
	пленок и покрытий		взаимодействии с
	1		окружающей средой,
			полями, частицами и
			излучениями; ;
			В-ПК-2[1] - владеть
			практическими
			навыками анализа

	эволюции
	структурно-фазового
	состояния
	материалов при
	взаимодействии с
	окружающей средой,
	полями, частицами и
	излучениями и
	влияния этой
	эволюции на
	свойства материалов.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства личной	профессионального модуля для
	ответственности за научно-	формирования чувства личной
	технологическое развитие	ответственности за достижение
	России, за результаты	лидерства России в ведущих
	исследований и их последствия	научно-технических секторах и
	(B17)	фундаментальных исследованиях,
		обеспечивающих ее
		экономическое развитие и
		внешнюю безопасность,
		посредством контекстного
		обучения, обсуждения социальной
		и практической значимости
		результатов научных
		исследований и технологических
		разработок. 2.Использование
		воспитательного потенциала
		дисциплин профессионального
		модуля для формирования
		социальной ответственности
		ученого за результаты
		исследований и их последствия,
		развития исследовательских
		качеств посредством выполнения
		учебно-исследовательских
		заданий, ориентированных на
		изучение и проверку научных
		фактов, критический анализ
		публикаций в профессиональной
		области, вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для

	за профессиональный выбор,	формирования у студентов
	профессиональный выоор,	ответственности за свое
	1	
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
	і лженаўчного толка (Вту)	студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных
		бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		-
		исторических предпосылок
		появления тех или иных открытий
<u> </u>		и теорий.

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	5 Семестр						
1	Часть 1	1-8		Кл-6 (10),Т-4 (5),КР- 6 (10)	25	КИ-8	
2	Часть 2	9-16		Кл- 15,Т- 12,КР- 13	25	КИ-15	
	Итого за 5 Семестр		16/16/0		50		
	Контрольные мероприятия за 5 Семестр				50	Э	

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
T	Тестирование
Кл	Коллоквиум
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	5 Семестр	16	16	0
1-8	Часть 1	8	8	
1	Тема 1	Всего а	аудиторных	часов
	Классификация дефектов. Вакансии: равновесная	2	2	
	концентрация, энергия образования.	Онлайі	Н	
2	Тема 2	Всего а	аудиторных	часов
	Подвижность вакансий, энергия миграции вакансии.	2	2	
	Самодиффузия	Онлайі	H	•

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		1
3	Тема 3	Всего аудиторных часов
	Междоузельные атомы: энергия образования	
	междоузельного атома, подвижность и энергия миграция	Онлайн
	междоузельного атома.	
4	Тема 4	Всего аудиторных часов
•	Искажение кристаллической решетки при образовании	2 2
	точечных дефектов.	Онлайн
	точечных дефектов.	Онлаин
	TD	D
5 - 6	Тема 5	Всего аудиторных часов
	Комплексы точечных дефектов: равновесная концентрация	
	комплексов, энергия связи комплексов, подвижность	Онлайн
	комплексов	
7 - 8	Тема 6	Всего аудиторных часов
	Экспериментальные исследования точечных дефектов.	
	Методы определения энергии образования и миграции	Онлайн
	точечных дефектов.	
9-16	Часть 2	8 8
9	Tema 7	Всего аудиторных часов
	Линейные дефекты. Краевая и винтовая дислокации.	2 2
	Контур и вектор Бюргерса. Основные свойства дислокаций	Онлайн
	контур и вектор вюргерей. Основные своиства дислокации	Онлаин
0	Tarra 0	Dagge granning and the second
9	Тема 8	Всего аудиторных часов
	Скольжение дислокаций. Сила Пайерлса-Набарро.	2 2
		Онлайн
1.0	m 0	
10	Тема 9	Всего аудиторных часов
	Переползание дислокаций. Скорость движения	2 2
	дислокаций. Пластическая деформация как движение	Онлайн
	дислокации.	
10	Тема 10	Всего аудиторных часов
	Упругие свойства дислокаций. Поля напряжений винтовой	
	и. краевой дислокаций. Энергия дислокации.	Онлайн
11	Тема 11	Всего аудиторных часов
	Силы, действующие на дислокацию. Взаимодействие	
	между дислокациями, взаимодействие дислокаций с	Онлайн
	точечными дефектами	Chilann
12	Тема 12	Всего аудиторных часов
14		T DOCTO AV/INTOURBLY MACOR
	Дислокационные реакции. Полные и частичные	
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический	Онлайн
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций.	Онлайн
13	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13	
13	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная	Онлайн Всего аудиторных часов
13	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций,	Онлайн
13	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная	Онлайн Всего аудиторных часов
13	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций,	Онлайн Всего аудиторных часов
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций, движение дислокации с порогами Тема 14	Онлайн Всего аудиторных часов Онлайн
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций, движение дислокации с порогами Тема 14 Дислокационные структуры. Скопление дислокаций.	Онлайн Всего аудиторных часов Онлайн Всего аудиторных часов
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций, движение дислокации с порогами Тема 14	Онлайн Всего аудиторных часов Онлайн
	Дислокационные реакции. Полные и частичные дислокации в ГЦК и ГПУ решетках. Энергетический критерий дислокационных реакций. Тема 13 Тетраэдр Томпсона в ГЦК решетке. Стандартная бипирамида в ГПУ решетке. Пересечение дислокаций, движение дислокации с порогами Тема 14 Дислокационные структуры. Скопление дислокаций.	Онлайн Всего аудиторных часов Онлайн Всего аудиторных часов

Дефекты упаковки. Энергия дефекта упаковки.			
Расщепление дислокации. Двойники.	Онлайн	I	

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации программы учебной дисциплины используются активные и интерактивные формы обучения с применением LMS, элекронных ресурсов и информационно-коммуникационных технологий. Занятия проводятся в форме чтения лекций по тематике и семинаров, охватывающих разделы учебной дисциплины.

Самостоятельная работа студентов подразумевает под собой проработку лекционного материала с использованием рекомендуемой литературы.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения
-------------	---------------------

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Cy	умма	Оценка по 4-ех	Оценка	Требования к уровню освоению
----	------	----------------	--------	------------------------------

баллов	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
	5 — «отлично»		усвоил программный материал,
		A	исчерпывающе, последовательно,
90-100			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	1	С	студенту, если он твёрдо знает
	4 – « <i>xopowo</i> »	_	материал, грамотно и по существу
70.74	4 = \(\chiopouo\)		излагает его, не допуская
70-74		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
		Е	выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»		неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
		F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60	2 — «неудовлетворительно»		существенные ошибки. Как правило,
TINWC 00			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 539.2 Е80 Теория и моделирование структуры и характеристик точечных дефектов в твердых телах : учебное пособие для вузов, Москва: НИЯУ МИФИ, 2012
- 2. 620 Ф50 Физическое материаловедение Т.1 Физика твердого тела, , : МИФИ, 2007

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

 $1.\,620\,\Phi 50\,\Phi$ изическое материаловедение Т.1 Физика твердого тела, Москва: НИЯУ МИФИ, $2012\,$

- 2. 669 Ш93 Прочность сплавов Ч.1 Дефекты решетки, , М.: Металлургия, 1982
- 3. ЭИ Ф50 Физическое материаловедение Т.1 Физика твердого тела, ; : МИФИ, 2007
- 4. ЭИ 3-24 Дислокации в кристаллах, их движение и упругие свойства : Учебное пособие, А. Г. Залужный, М.: МИФИ, 1990
- 5. 539.3 3-24 Точечные дефекты кристаллического строения металлов и сплавов : Учеб. пособие, Залужный А.Г., М.: МИФИ, 1987
- 6. 669 Н73 Дефекты кристаллического строения металлов: , Новиков И.И., М.: Металлургия, 1983

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

1. Пакет программ Microsoft Office (мультимедийная аудитория)

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Вопросы к коллоквиуму №1

- 1. Вакансии. Энергия образования. Равновесная концентрация вакансий.
- 2. Миграция вакансий. Самодиффузия.
- 3. Межузельные атомы. Энергия образования и энергия миграции межузельных атомов.
- 4. Искажение кристаллической решетки при образовании точечных дефектов.
- 5. Комплексы точечных дефектов. Равновесная концентрация комплексов.
- 6. Конфигурация и миграция комплексов точечных дефектов.
- 7. Источники и стоки точечных дефектов.
- 8. Отжиг точечных дефектов
- 9. Способы получения высокой концентрации точечных дефектов. Закалка.
- 10. Способы получения высокой концентрации точечных дефектов. Облучение
- 11. Экспериментальное определение энергии образования и энергии миграции точечных дефектов.

Второй раздел. Излагаются основы теории дислокаций. В этом разделе дислокации классифицируются по взаимной ориентации вектора сдвига и единичного вектора направления линии дислокации. Особое внимание необходимо уделить объяснению различия в механизмах перемещения, полях деформаций и напряжений, взаимодействия с точечными дефектами дислокаций разного типа (винтовые, краевые и смешанные). Подробно рассмотреть влияние различных факторов на пластическую деформацию кристаллов (факторы, тормозящие движение дислокаций).

Вопросы к коллоквиуму №2

- 1. Краевая и винтовая дислокации, контур и вектор Бюргерса
- 2. Скольжение краевой дислокации

- 3. Переползание краевой дислокации
- 4. Движение винтовой дислокации
- 5. Пластическая деформация как движение дислокаций
- 6. Тензор деформации и напряжения винтовой дислокации
- 7. Тензор деформации и напряжения краевой дислокации
- 8. Энергия винтовой дислокации
- 9. Энергия краевой дислокации
- 10. Силы, действующие на дислокацию
- 11. Силы взаимодействия между дислокациями
- 12 Взаимодействие точечных дефектов с дислокациями
- 13 Источник Франка-Рида
- 14 Скопление дислокаций
- 15 Стенка дислокаций. Дисклинации

Третий раздел. Рассматриваются механизмы образования дислокаций. В этом разделе необходимо особое внимание уделить рассмотрению источника Франка — Рида размножения дислокаций при пластической деформации.

При изложении междислокационного взаимодействия рассмотреть механизмы образования таких дислокационных структур, как стенка и скопление дислокаций; образования субструктуры.

Подробно рассмотреть использование таких геометрических образов, как тетраэдр Томпсона и стандартная бипирамида, при анализе дислокационных реакций

Вопросы к коллоквиуму №3

- 1.Полные и частичные дислокации. Дислокационные реакции, энергетический критерий Франка
- 2. Полные дислокации в ГЦК-решетке
- 3. Полные дислокации в ГПУ-решетке
- 4. Частичные дислокации Шокли в ГЦК-решетке
- 5. Частичные дислокации Шокли в ГПУ-решетке
- 6. Частичные дислокации Франка
- 7. Дислокационные реакции в ГЦК-решетке, тетраэдр Томпсона
- 8. Дислокационные реакции в ГПУ-решетке, стандартная бипирамида
- 3. Проведение семинарских занятий и выполнение самостоятельных работ

Проведение семинарских занятий направлено на закрепление прочитанного материала и использование его для решения практических задач.

С этой целью предлагаются задачи по определению равновесной концентрации точечных дефектов и их комплексов; по определению параметров самодиффузии; по анализу сил, действующих на дислокации при различных напряженных состояниях и при междислокационном взаимодействии; по анализу дислокационных реакций.

В рамках самостоятельной работы студентам периодически предлагается проработка отдельных глав рекомендованных учебников и учебных пособий.

Домашние задания:

1 - 4 недели

Классификация дефектов в кристаллах. Виды точечных дефектов. Вакансии и межузельные атомы. Искажение кристаллической решетки, вызываемое точечными дефектами.

Термодинамика точечных дефектов. Энергии образования вакансий и межузельных атомов. Подвижность точечных дефектов. Источники и стоки точечных дефектов.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. Стр. 151-171
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С. 3-52
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристаллической решетки». Металлургия. 1990 г. С. 127 137
- А. Г. Залужный «Точечные дефекты кристаллического строения металлов и сплавов». Учебное пособие. МИФИ 1987 г. С. 1-20

5 - 6 недели.

Комплексы точечных дефектов. Энергия связи комплексов. Равновесная концентрация комплексов вакансий. Конфигурация комплексов. Подвижность комплексов.

Получение высокой концентрации точечных дефектов. Методы закалки, деформации, облучения. Методы определения энергий образования и миграции точечных дефектов.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. Стр. 171-201
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С. 52-75
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристаллической решетки». Москва, Металлургия. 1990 г. С. 137 147
- А. Г. Залужный «Точечные дефекты кристаллического строения металлов и сплавов». Учебное пособие. МИФИ 1987 г. С. 21-58

7 – 8 нелели.

Линейные дефекты. Краевая и винтовая дислокации. Контур и вектор Бюргерса. Основные свойства дислокаций. Силы Пайерлса - Набарро. Скольжение и переползание краевой дислокации. Движение винтовой дислокации. Смешанные дислокации и их движение.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. Стр. 201-230
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С. 75 144
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристалличесой решетки». Москва, Металлургия. 1990 г. С. 148- 180
- А. Г. Залужный «Дислокации в кристаллах, их движение и упругие свойства». Учебное пособие. МИФИ 1990 г. С. 3-31

9 – 12 недели.

Упругие свойства дислокаций. Тензоры деформации и напряжения. Поле и ядро дислокации. Энергия дислокации. Силы, действующие на дислокацию. Силы взаимодействия между дислокациями. Взаимодействие дислокаций с точечными дефектами. Атмосферы Коттрелла, Снука, Сузуки. Взаимодействие дислокаций с вакансиями и межузельными атомами. Электрическое взаимодействие дислокаций с атомами примеси. Торможение дислокаций в твердых растворах внедрения и замещения. Торможение дислокаций частицами фазовых выделений. Торможение дислокаций границами зерен и субзерен.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. С. 230-255
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С. 101 137
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристалличесой решетки». Москва, Металлургия. 1990 г. С. 183 -193, 257 -273
- А. Г. Залужный «Дислокации в кристаллах, их движение и упругие свойства». Учебное пособие. МИФИ 1990 г. С. 31-67

13 – 14 недели.

Образование дислокаций.

Механизмы образования дислокаций. Размножение дислокаций при пластической деформации (источник Франка-Рида). Скопление дислокаций. Стенка дислокаций. Дисклинации. Системы субграниц.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. С. 255-278
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С.175 218
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристалличесой решетки». Москва, Металлургия. 1990 г. С. 264 -303
- А. Г. Залужный «Дислокации в кристаллах, их движение и упругие свойства». Учебное пособие. МИФИ 1990 г. С. 67 -91

15 -18 недели.

Дислокации в типичных кристаллических структурах.

Полные и частичные дислокации. Энергетический критерий Франка дислокационных реакций. Тетраэдр Томпсона и стандартная бипирамида. Расщепление дислокаций. Энергия дефекта упаковки. Скольжение и переползание расщепленных дислокаций. Двойникование. Свехструктурные дислокации.

Образование на дислокациях порогов. Движение дислокаций с порогами. Расщепление порогов.

- Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г. С. 278 -306
- М. А. Штремель «Прочность сплавов. Дефекты решетки». Москва, Металлургия. 1982 г. С.175 215
- И. И. Новиков, К. М. Розин «Кристаллография и дефекты кристалличесой решетки». Москва, Металлургия. 1990 г. С. 193 240
- А. Г. Залужный «Дислокации в кристаллах, их движение и упругие свойства». Учебное пособие. МИФИ 1990 г. С. 77 -91
 - І. Типовые задачи к семинарским занятиям

Точечные дефекты

Межатомные взаимодействия

- 1.B простой кубической решетке с периодом в представить вторую производную парного взаимодействия $\square(0)$ через модуль всестороннего сжатия K.
- 2.Найти зависимость модуля всестороннего сжатия K(e) от деформации e=x/b, используя разложение потенциала парного взаимодействия по смещениям до X. При каких деформациях е изменение модуля упругости $[\kappa(0)-\kappa(e)]/\kappa(0)\square$ достигнет 10% ($\square=0,5$).

- 3.Найти при каком напряжении (\square кр) простая кубическая решетка с периодом b теряет устойчивость при растяжении. Потенциал \square (x) разложить до X.
- 4. Найти температурную зависимость амплитуды гармонических колебаний в решетке. Выразить её через объёмный модуль упругости .
- 5. Оценить температуру плавления Тпл как точку потери устойчивости колебаний атома, где возвращающая сила проходит через максимум. Выразить Тпл через модуль упругости К при постоянной Грюнайзена \square =2.

Точечные дефекты

- 1. Известно, что при T1-C1, а при T2-C2. Найти энергию образования и колебательную энтропию вакансии.
- 2. Определить равновесную концентрацию дивакансий. Известна энергия образования вакансии Evf и энергия связи вакансии в дивакансии В.
- 3. Найти предэкспоненциальный множитель Д0 для самодиффузии в ГЦК решетке в направлении [111], выразив межплоскостное расстояние d, объем на один атом □ и плотность укладки через кратчайшее межатомное расстояние.

В ОЦК-решетке в направлении □110□, □100□.

- 4. Энергия образования вакансии в чистом Al –Evf . Энергия связи вакансии с примесным атомом-B. Найдите равновесную концентрацию вакансий в разбавленном твёрдом растворе с концентрацией Zn-C. Оцените условия, при которых концентрация вакансий около атомов примеси будет больше чем в остальной решетке ($c \Box 1$).
- 5.При температуре Т1 коэффициент самодиффузии Д1, при температуре Т2-Д2. После резкой закалки с Т3 электросопротивление образца-R3, с температуры Т4-R4. Допуская, что всё различие электросопротивления обусловлено наличием вакансий и пропорционально их концентрации, найдите энергию миграции вакансии. Электросопротивление исходного образца-R0.
- 6. Оцените наибольший возможный вклад равновесной концентрации дивакансий в диффузию, если энергия связи B = Evf/Z (Z=12), а энергия активации миграции Evm / Ev2m = 6.
- 7.Выразить коэффициент диффузии вакансий Дv в простой кубической решетке через частоту колебаний атомов $\Box 0$ и энергию миграции вакансий Evm. Сравните с коэффициентом самодиффузии.
- 8. Зная энергию активации самодиффузии (Есд) и энергию активации миграции(Evm) вакансий, определить отношение равновесных концентраций вакансии при Т1 иТ2.
- 9. Равновесная концентрация вакансий в золоте при T1-Cv1. Стержень закаливается с температуры T1, а затем нагревается при температуре T2 \Box T1. При достижении равновесной концентрации стержень сокращается в размерах- \Box L/L=1,1x10-4. Найдите \Box a/a.
- 10. Частица высокой энергии передаёт решетке в каждом столкновении одну и туже долю \square своей энергии. Повреждение решетки прекращается, когда передаваемая энергия станет ниже Ed. Найдите зависимость глубины повреждения L от первичной энергии E, если пробег между столкновениями e.
- 11. Отношение равновесной концентрации вакансий к равновесной концентрации дивакансий при Т1- N1, при Т2-N2. Определить энергию связи вакансии в дивакансии, если энергия образования вакансии равна Evf.
- 12. Определить равновесную концентрацию дивакансий. Известна энергия образования вакансии Е и энергия связи вакансии в дивакансии В.
- 13. Энергия образования вакансий в \square -Fe Evf. Энергия связи вакансии с примесным атомом В. Найти равновесную концентрацию вакансий в разбавленном твердом растворе

замещения (концентрация примеси - с). Оцените условия, при которых концентрация вакансий около атомов примеси будет больше чем в остальной решетке.

Дислокации

Упругие свойства дислокаций
1. Перечислить системы скольжения в разных кристаллических решетках
2. Определить за какое время тело увеличит свои размеры в два раза в направлении
скольжения дислокации в процессе пластической деформации, если известно: □ = 1011 см-2, b
= 3*10-8 см и скорость скольжения дислокации $v = 1$ см/с.
3. Краевая дислокация в кристалле NaCl параллельна □001□, а вектор = ½ □110□.
Вычислить объем материала (на 1 см. длины дислокации), который нужно добавить к краю
экстраплоскости или убрать с него, если дислокация перемещается на 10-4 см. в направлении
$\Box 100 \Box \text{ (b} = 3*10-8cm).$
4.Вектор Б краевой дислокации в ГЦК - кристалле = b/2 □110□. Определить силы,
действующие на дислокацию, если на кристалл действуют растягивающие напряжения \Box ,
параллельные: а) 🗆 110 🗆 , б) 🗆 111 🗆
 На кристалл с ГЦК-решеткой действуют растягивающие напряжения □. Какие силы
будут действовать на дислокацию, направленную по $\Box 001\Box$ с вектором $= b/2 \Box 001\Box$: а) \Box по
□111□. b) □ no □100□.
6. На кристалл с ОЦК-решеткой в плоскости (001) действуют касательные напряжения
□, направленные по □ 10□.Какие силы будут действовать а) на краевую дислокацию,
параллельную $\Box 010 \Box$ с $=$ b $\Box 001 \Box$. b) на правовинтовую дислокацию с $=$ b/2 $\Box 111 \Box$.
7. Определить силу, действующую на дислокацию (рис.). Все отрезки дислокации имеют
единичную длину.
8. Определить силу взаимодействия между:
а) параллельными краевыми дислокациями (одного и разного знака)
b) параллельными правовинтовыми дислокациями
с) параллельными правовинтовой и левовинтовой дислокациями
d) параллельными краевой и винтовой дислокациями
Правовинтовая: □00b □, □00 □
9. В кристалле имеются краевые дислокации, параллельные □001□ с вектором
$= b/2 \square 110 \square$. Плотность дислокаций $\square = 1011$ см-2. На кристалл действуют
напряжения \Box , направленные по $\Box 110\Box$ в пл. (001). Определить силы,
действующие на дислокацию. Если под действием этих сил дислокации скользят со
скоростью $v = 1$ см/сек , определить время, за которое кристалл изменит свои размеры в два
раза по направлению □ 100 □. Параметр решетки b = 3*10-8 см.

10. В кристалле с ГЦК-решеткой имеется краевая дислокация параллельная

□110 с вектором = b/2 □10 □. В плоскости (001) действует сила □1, параллельная

□010 □, в плоскости (100) действует сила □2 , параллельная □001 □. Определить силы,

действующие на дислокацию. Указать какие силы могут вызвать скольжение дислокации. Определить деформацию кристалла в направлении $\Box 010\Box$, вызванную скольжением подобных дислокаций, если
плотность дислокаций $\Box = 1011$ см-2, $b = 3*10-8$ см, скорость перемещения $v = 1$ см/с и время 103 сек. \Box
краевыми дислокациями, параллельными □001 □ и скользящими по плоскостям (110) и (1 0). Если плотность этих дислокаций □, величина вектора Бюргерса каждой из них b и их средняя скорость v, определите скорость деформации растяжения кристалла. Параметр решетки 4*10-8
см., длина дислокации 5*10-1 см. 12. Рассмотреть краевую дислокацию с вектором t вдоль □001□ и вектором составляющем угол 450 с осями X и Y .Напряженное состояние задано на рис. Найти общее выражение для силы, действующей на единицу длины дислокации.
выражение для силы, денетвующей на единицу длины дислокации.
13. Даны две прямолинейные краевые дислокации со взаимно ортогональными векторами Бюргерса одинаковой величины b (рис.). Вычислите работу, необходимую для перемещения дислокации A в её плоскости скольжения от 20а до а. (с□□ а)
14. В ГЦК-кристалле две параллельные краевые дислокации с вектором b. Расстояние между плоскостями скольжения этих дислокаций b. Если предположить, что одна дислокация неподвижна, то надо определить, какую работу совершают внешние силы, заставляя скользить
подвижную дислокацию, изменяя расстояние между ними от 20a до a (b \square a). 15. Краевая дислокация в ГЦК-решетке параллельная \square 10 \square с вектором = b/2 \square 0 \square перемещается по направлению \square 2 \square на 1 = 10-4 см., затем встречает препятствие и
переползает в соседнюю параллельную плоскости движения кристаллографическую плоскость

и движется в ней в прежнем направлении на расстояние 10-2 см. Определить объем материала, который надо добавить к краю экстраплоскости или убрать с нее, чтобы реализовать данное

перемещение. Параметр решетки 4*10-8 см., длина дислокации 5*10-1 см.

- 16. Краевая дислокация в ГЦК решетке параллельная □001□ с вектором = b/2□10□ перемещается по направлению □00□ на 1=10-3 см., затем встречает препятствие и переползает в соседнюю параллельную плоскости движения кристаллографическую плоскость и движется в ней в прежнем направлении на расстояние 10-2 см. Определить объем материала, который надо добавить к краю экстраплоскости или убрать с нее, чтобы реализовать данное перемещение. Параметр решетки 4*10-8 см., длина дислокации 5*10-1 см.
- 17. Краевая дислокация в ГЦК решетке параллельная \Box 10 \Box с вектором = $b/2\Box$ 110 \Box перемещается по направлению \Box 112 \Box на 1 = 10-4 см., затем встречает препятствие и переползает в соседнюю параллельную плоскости движения кристаллографическую плоскость и движется в ней в прежнем направлении на расстояние 10-2 см. Определить объем материала, который надо добавить к краю экстраплоскости или убрать с нее, чтобы реализовать данное перемещение. Параметр решетки 4*10-8 см., длина дислокации 5*10-1 см.
- 18. Найти значение □ý нормальных напряжений двух параллельных разноименных краевых дислокаций, расположенных друг под другом на расстоянии 2b.

Определить точки, где нормальные напряжения равны нулю, где сжимающие, где растягивающие.

- 19. Проанализируйте взаимодействие между двумя краевыми дислокациями, линии которых параллельны друг другу, а векторы Бюргерса ортогональны. Определите все положения равновесия по отношению к действующим силам и укажите, когда равновесие устойчивое, неустойчивое, безразличное.
- 20. Начертите схему плоскости, нормальной краевой дислокации в анизотропной среде. Укажите на этой плоскости линии, на которых одна из компонент $\Box x$, $\Box y$, $\Box xy$ обращается в нуль (дислокация параллельна оси Z, а её вектор E параллелен оси E). Укажите знаки напряжений в разных участках плоскости.
- 21.Найти поле касательных напряжений двух параллельных разноименных краевых дислокаций с общей плоскостью скольжения, если расстояние между ними 2b.Сравнить закон убывания напряжения с расстоянием от центра этой системы и от одиночной дислокации при г \square \square b вдоль осей x=0, y=0 и вдоль луча \square = Const.

PS.
$$Y=Y'$$
, $X=2b-X'$

- 21. Даны две одноименные краевые дислокации, имеющие одну плоскость скольжения и отстоящие друг от друга на рестоянии 2b. Найти выражение для определения поля деформации сдвига этой системы дислокаций. Определить деформацию сдвига в точке, лежащей на плоскости скольжения и отстоящей от одной дислокации на расстоянии 3, а от другой на расстоянии b. Упругие константы □ и □- известны.
- 22. Найдите деформацию в точке непосредственно над или под краевой дислокацией. Вычислите всесторонние напряжения в точках, находящихся на 5b выше или ниже краевой дислокации.

Дислокационные реакции

- 1. Расщепление дислокации СД на дислокации Шокли (ГЦК решетка) в пл. (11).
- 2. Расщепление дислокации ST на две (p+c/2) дислокации (ГПУ решетка)
- 3. Расщепление дислокации АВ на дислокации Шокли и Франка (ГЦК решетка)
- 4. Расщепление дислокации СВ на две р дислокации (ГПУ решетка)
- 5. Расщепление дислокации ВС на дислокации Шокли и вершинную (ГЦК решетка)
- 6. Расщепление дислокации ТА на р и с/2 дислокации (ГПУ решетка)
- 7. Проанализировать взаимодействие расщепленной дислокации АД, скользящей в

- пл. (11), с расщепленной дислокацией ДС, скользящей в пл.
- (11), приводящее к образованию барьера Ломер- Коттрелла (ГЦК решетка)
- 8. Объединение р и с/2 дислокации (ГПУ решетка)
- 9. Проанализировать взаимодействие расщепленной дислокации ВС, скользящей в пл.
- (11), с расщепленной дислокацией СД, скользящей в пл.
- (11), приводящее к образованию барьера Ломер- Коттрелла (ГЦК решетка)
- 10. Объединение двух р-дислокации (ГПУ решетка)
- 11. Проанализировать взаимодействие расщепленной дислокации ВД, скользящей в пл. (11), с расщепленной дислокацией ДА, скользящей в пл.
- (11), приводящее к образованию барьера Ломер-Коттрелла (ГЦК решетка)
- 12. Объединение двух (р + с/2)-дислокации (ГПУ решетка)
- 13. Проанализировать взаимодействие расщепленной дислокации СД, скользящей в пл. (11), с расщепленной дислокацией ДА, скользящей в пл. (11), приводящее к
- образованию барьера Ломер- Коттрелла (ГЦК решетка)
- 14. . Расщепление (p+c/2)-дислокации на дислокацию Шокли и Франка (ГПУ решетка)
- 15. Проанализировать взаимодействие расщепленной дислокации АД, скользящей в пл. (11), с расщепленной дислокацией ДВ, скользящей в пл.
- (1 1), приводящее к образованию барьера Ломер- Коттрелла (ГЦК решетка)
- 16. Расщепление с- дислокации на две (р + с/2)-дислокации (ГПУ решетка)
- 17. Проанализировать взаимодействие расщепленной дислокации АВ, скользящей в пл. (11), с расщепленной дислокацией ВС, скользящей в пл.
- (1), приводящее к образованию барьера Ломер-Коттрелла (ГЦК решетка)
- 18. Объединение двух р и с/2 -дислокации (ГПУ решетка)
- 19. Проанализировать взаимодействие расщепленной дислокации АД, скользящей в
- пл. (11), с расщепленной дислокацией ДС, скользящей в пл.
- (1 1), приводящее к образованию барьера Ломер- Коттрелла (ГЦК решетка)
- 20. Объединение двух р -дислокации (ГПУ решетка)
- 21. Проанализировать дислокационные реакции между скользящими в пересекающихся кристаллографических плоскостях расщепленными дислокациями, приводящие к образованию барьеров Ломер-Коттрелла с вершинной дислокацией □□ (ГЦК решетка)
 - 22. Расщепление дислокации ST на две (p+c/2) дислокации (ГПУ решетка)
- 23. Проанализировать дислокационные реакции между скользящими в пересекающихся кристаллографических плоскостях расщепленными дислокациями, приводящие к образованию барьеров Ломер-Коттрелла с вершинной дислокацией □□ (ГЦК решетка)
 - 24. Расщепление дислокации СА на две р дислокации (ГПУ решетка)
- 25. Проанализировать дислокационные реакции между скользящими в пересекающихся кристаллографических плоскостях расщепленными дислокациями, приводящие к образованию барьеров Ломер- Коттрелла с вершинной дислокацией □□ (ГЦК решетка)
 - 26. Расщепление (p + c/2)-дислокации на дислокацию Шокли и Франка (ГПУ решетка)
 - 3. Организация контроля

На семинарских занятиях студенты вызываются к доске для решения практических задач. Постоянно, индивидуальным опросом, проводится контроль теоретических знаний. После каждого модуля проводится коллоквиум с последующим анализом результатов работ.

Получение положительной оценки по каждому коллоквиуму является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки работа должна быть переделана и сдана во время зачетной недели в конце семестра.

4. Проведение экзамена

Для допуска к экзамену необходимо выполнить с положительными оценками все проведенные в течение семестра самостоятельные работы. При условии сдачи с положительными оценками всех самостоятельных работ студент во время сдачи экзамена отвечает на экзаменационные вопросы. Перечень экзаменационных вопросов прилагается.

Вопросы к экзамену

- 1. Точечные дефекты. Равновесная концентрация вакансий
- 2. Миграция вакансий. Самодиффузия.
- 3. Миграция междоузельных атомов.
- 4. Конфигурация междоузельных атомов
- 5. Энергия образования и миграции вакансий
- 6. Энергия активации миграции междоузельных атомов
- 7. Получение высокой концентрации точечных дефектов закалкой

9

- 8. Комплексы точечных дефектов. Равновесная концентрация дивакансий
- 9. Искажение кристаллической решетки при образовании точечных дефектов
- 10. Энергия образования и миграции междоузельных атомов
- 11. Экспериментальные методы определения энергии активации миграции вакансий
- 12. Экспериментальные методы определения энергии образования вакансий
- 13. Конфигурация и миграция комплексов точечных дефектов.
- 14. Краевая и винтовая дислокации. Контур и вектор Бюргерса
- 15. Поле напряжений винтовой дислокации
- 16. Поле напряжений краевой дислокации.
- 17. Движение краевой дислокации
- 18. Движение винтовой дислокации
- 19. Упругое взаимодействие между дислокациями
- 20. Стенка дислокаций. Дисклинации
- 21. Скопление дислокаций
- 22. Частичные дислокации Шокли в ГПУ и ГЦК решетках
- 23. Силы, действующие на дислокации
- 24. Источники Франка-Рида образования дислокаций
- 25. Пластическая деформация как движение дислокаций
- 26. Взаимодействие дислокаций с точечными дефектами
- 27. Частичные дислокации Франка
- 28.Полные и частичные дислокации. Энергетический критерий Франка дислокационных реакций
- 29 Дислокационные реакции в ГЦК кристалле. Тетраэдр Томпсона
- 30. Дислокационные реакции в ГПУ кристалле. Стандартная бипирамида
- 31. Пересечение дислокаций. Движение дислокаций с порогами

ОСНОВНАЯ

- 1. Физическое материаловедение. Том 1. Физика твердого тела. МИФИ. Москва 2007 г.
- 2. И. И. Новиков, К. М. Розин "Кристаллография и дефекты кристаллической решетки»

Металлургия, 1990 г.

3. М. А. Штремель "Прочность сплавов ", ч. 1, " Дефекты решетки", Металлургия, 1982г.

ДОПОЛНИТЕЛЬНАЯ

- 1. А. Г. Залужный "Точечные дефекты кристаллического строения металлов и сплавов", Москва, МИФИ, 1987г.
- 1. А. Г. Залужный "Дислокации в кристаллах, их движение и упругие свойства", Москва, МИФИ, 1990 г.

Автор(ы):

Залужный Александр Георгиевич, д.ф.-м.н., профессор

Рецензент(ы):

Исаенкова М.Г.