Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ БИОМЕДИЦИНЫ КАФЕДРА ПОЛУПРОВОДНИКОВОЙ КВАНТОВОЙ ЭЛЕКТРОНИКИ И БИОФОТОНИКИ

ОДОБРЕНО НТС ИФИБ

Протокол № 3/2

от 30.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

КВАНТОВАЯ ЭЛЕКТРОНИКА

Направление подготовки (специальность)

[1] 03.04.02 Физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	2	72	15	30	0		27	0	3
Итого	2	72	15	30	0	0	27	0	

АННОТАЦИЯ

В рамках дисциплины формируется представление об оптических резонаторах, как о системе формирования лазерного излучения, представление средствах их количественной и качественной характеризации, о системах транспортировки и преобразования лазерного излучения, изучается преобразование гауссовых пучков, рассматриваются критерии и требования к материалам для оптических элементов лазеров.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения дисциплины является формирование у магистрантов знаний и навыков, необходимых для успешной научной и профессиональной деятельности в различных областях лазерной физики, в частности для расчета параметров электромагнитных полей, генерирующихся в открытых оптических резонаторах (спектральный состав поля, его пространственная конфигурация, расходимость и др.), и расчета лазерных систем на их основе.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина логически и содержательно-методически связана со следующими разделами физики: оптикой, нелинейной оптикой, взаимодействием излучения с веществом, квантовой механикой, физикой твердого тела, и другими. Изучение данной дисциплины необходимо для овладения теоретической базой и методами решения задач связанных с расчетами параметров лазеров и лазерного излучения.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции УК-6 [1] — Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки

Код и наименование индикатора достижения компетенции 3-УК-6 [1] — Знать: методики самооценки, самоконтроля и саморазвития с использованием подходов здоровьесбережения

У-УК-6 [1] — Уметь: решать задачи собственного личностного и профессионального развития, определять и реализовывать приоритеты совершенствования собственной деятельности; применять методики самооценки и самоконтроля; применять методики, позволяющие улучшить и сохранить здоровье в процессе жизнедеятельности

В-УК-6 [1] — Владеть: технологиями и навыками управления своей познавательной деятельностью и ее совершенствования на основе самооценки, самоконтроля и принципов самообразования в течение всей жизни, в том числе с использованием здоровьесберегающих подходов и методик

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Кол и наименование
Кол и наименование

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
на	учно-исследовательс	кий	
- выявление актуальных проблем и тенденций в области физики - работа с научной литературой, в том числе с использованием информационных технологий, отслеживание отечественных и зарубежных работ в исследуемой области - выбор методов, современной аппаратуры и информационных технологий для проведения исследования - проведение теоретических и экспериментальных исследований	физические объекты и системы различного масштаба, уровня организации, физические явления и процессы, физические, инженернофизические технологии, методы, приборы, устройства	ПК-4.1 [1] - Способен применять на практике знания лазерной физики, физики полупроводников, оптики, физических основ взаимодействия излучения с веществом для качественного и количественного описания исследуемых объектов и явлений Основание: Профессиональный стандарт: 40.006, 40.037, 40.039	3-ПК-4.1[1] - Знать законы и принципы физики твердого тела, оптики, взаимодействия излучения с веществом, квантовой механики, лазерной физики; У-ПК-4.1[1] - Уметь формулировать, выделять, анализировать исходные данные об исследуемом объекте и явлении, исходя из законов и принципов физики твердого тела, оптики, взаимодействия излучения с веществом, квантовой механики, лазерной физики; В-ПК-4.1[1] - Владеть приемами и методами, используемыми в области физики твердого тела, оптики, взаимодействия излучения с веществом, квантовой механики, лазерной физики; качественного и количественного описания исследуемых объектов и явлений 3-ПК-4.2[1] - Знать
актуальных проблем и	объекты и	ставить и решать	теоретические и
тенденций в области	системы	теоретические и	аналитические модели

физики - работа с научной литературой, в том числе с использованием информационных технологий, отслеживание отечественных и зарубежных работ в исследуемой области выбор методов, современной аппаратуры и информационных технологий для проведения исследования проведение теоретических и экспериментальных исследований

различного масштаба, уровня организации, физические явления и процессы, физические, инженернофизические, биофизические технологии, методы, приборы, устройства

экспериментальные задачи в области физики конденсированного вещества, фотоники, физики лазеров, полупроводниковой физики, взаимодействия излучения с веществом

Основание: Профессиональный стандарт: 40.037, 40.039

и основные приемы проведения эксперимента в области физики конденсированного вещества, фотоники, физики лазеров, полупроводниковой физики. взаимодействия излучения с веществом; У-ПК-4.2[1] - Уметь формулировать задачи исследования в области физики конденсированного вещества, фотоники, физики лазеров, полупроводниковой физики, взаимодействия излучения с веществом, выбирать подходящие модели, экспериментальные приемы и методы исследования; В-ПК-4.2[1] - Владеть навыками анализа полученных результатов, формулирования выводов, корректировки дальнейшего плана исследования в области физики конденсированного вещества, фотоники, физики лазеров, полупроводниковой физики, взаимодействия излучения с веществом

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	2 Семестр Первый раздел	1-7	7/15/0		25	КИ-8	3-ПК-
							4.1, У- ПК- 4.1, В- ПК- 4.1, 3-ПК- 4.2, У- ПК- 4.2, В- ПК- 4.2, 3-УК- 6, У- УК-6, В-
2	Второй раздел	8-15	8/15/0		25	КИ-15	3-ПК- 4.1, У- ПК- 4.1, В- ПК- 4.1, 3-ПК- 4.2, У- ПК- 4.2, В- ПК- 4.2, В- ПК- 4.2, В- ПК- 4.2, В- ПК- 4.2, В- ПК- 4.2, В- ПК- 4.1, В- В- В- В- В- В- В- В- В- В- В- В- В-

				УК-6
Итого за 2 Семестр	15/30/0	50		
Итого за 2 Семестр Контрольные мероприятия за 2 Семестр	15/30/0	50 50	3	3-ПК- 4.1, У- ПК- 4.1, В- ПК- 4.1, 3-ПК- 4.2, У- ПК- 4.2, В- ПК- 4.2, 3-УК-
				6, y- yK-6, B- yK-6

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование			
чение				
КИ	Контроль по итогам			
3	Зачет			

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	2 Семестр	15	30	0
1-7	Первый раздел	7	15	0
	Часть 1	Всего а	іудиторных	часов
	Уравнения Максвелла. Законы распространения	1	3	0
	электромагнитного излучения в вакууме, в среде. Плоские	Онлайн		
	и сферические волны.	0	0	0
	Часть 2	Всего аудиторных часов		
	Гауссовы пучки - понятие, количественное и качественное	2	4	0
	описание. Преобразование Гауссовых пучков.	Онлайн		
		0	0	0
	Часть 3	Всего а	удиторных	часов

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Оптический резонатор: понятие, характеристика, виды.	2	4	0	
		Онла	ийн		
		0	0	0	
	Часть 4	Всег	о аудитор	ных часов	
	G-диаграмма. Добротность резонатора. Потери в	2	4	0	
	резонаторе. Моды резонатора.	Онла			
		0	0	0	
8-15	Второй раздел	8	15	0	
	Часть 6	Всег	о аудитор	ных часов	
	Явление самофокусировки. Солитон.	1	2	0	
		Онла	ийн		
		0	0	0	
	Часть 1		о аудитор	ных часов	
	Реальный резонатор. Лазер в режиме непрерывного	2	3	0	
	действия. Импульсный лазер.		Онлайн		
		0	0	0	
	Часть 4	Всег	Всего аудиторных час		
	Лазерный усилитель.	1	2	0	
		Онла	ийн		
		0	0	0	
	Часть 2	Всег	о аудитор	ных часов	
	Лазер с модулированной добротностью резонатора.	1	3	0	
		Онла	ийн		
		0	0	0	
	Часть 3	Всег	о аудитор	ных часов	
	Лазер с синхронизацией мод.	1	2	0	
		Онла	йн	•	
		0	0	0	
	Часть 5	Всег	о аудитор	ных часов	
	Управление характеристиками лазерного излучения.	2	3	0	
	Оптика лазерных систем.	Онла	ийн		

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ СЕМИНАРОВ

Недели	Темы занятий / Содержание
	2 Семестр

Занятие 1.

Взаимодействие резонансного излучения с двухуровневой средой. Усиление квазинепрерывного излучения. Некогерентный режим усиления коротких лазерных импульсов: деформация импульса, сверхсветовое распространение импульса, предельная длина усилителя.

Занятие 2.

Усиление лазерных импульсов при когерентном взаимодействии излучения со средой: 2π - и π -импульсы. Деформация импульса произвольной формы при распространении через резонансную среду. Устойчивость 2π - и π -импульсов в резонансно поглощающей (усиливающей) среде.

Занятие 3.

Уравнения Блоха: вывод из системы уравнений для матрицы плотности и из системы уравнений, описывающих взаимодействие лазерного импульса с двухуровневой средой — учёт соответствующих приближений.

Занятие 4.

Описание когерентного взаимодействия излучения со средой уравнениями Блоха: $\pi/2$ -, π - и 2π -импульсы; осцилляции Раби, фотонное эхо, деформация импульса произвольной формы.

Занятие 5.

Когерентное взаимодействие излучения с трёхуровневыми средами (λ – системы). Когерентное пленение населённостей; электромагнитно индуцированная прозрачность; остановка света, миниатюрные стандарты частоты.

Занятие 6.

Самофокусировка световых пучков: критическая мощность и длина самофокусировки. Мелкомасштабная самофокусировка: инкремент нарастания пространственных возмущений светового пучка. Интеграл распада и пространственная фильтрация излучения. Двулучереломление в изотропной среде, наведённое полем электромагнитной волны, при наличии самофокусировочной нелинейности.

Занятие 7-8.

Нелинейные эволюционные уравнения Римана, Бюргерса, Кортевега - де Фриза. Сохраняющиеся при распространении пространственные структуры, солитоны.

Занятие 9.

Распространение лазерных импульсов в среде с дисперсией. Изменение длительности и несущей частоты импульсов.

Занятие 11.

Лазер в режиме генерации: приближение больших R для непрерывных лазеров. Скоростные уравнения и релаксационные колебания. Лазер с модулированной добротностью резонатора.

Занятие 12.
Квазиклассическая теория лазера. Одномодовый лазер
бегущей волны: амплитуда и частота генерации.
Релаксационные колебания и нарушение условия
устойчивости решения – второй лазерный порог и
динамический хаос.
Занятие 13.
Классы лазеров и неустойчивость лазерной генерации при
внешнем воздействии. Затягивание частоты и
спектральная ширина линии генерации.
Занятие 14-15.
Лазер стоячей волны; механизм многомодовой генерации
лазера с однородно уширенной линией усиления.
Многомодовая генерация лазеров с неоднородно
уширенными линиями усиления.
Занятие 16.
Комбинационное взаимодействие мод (пульсирующие
решётки инверсной населённости) – фазировка
спектральных компонент генерации многомодового лазера
стоячей волны.
Занятие 17-18.
Лазер с синхронизированными модами – длительность и
частота следования импульсов. Спектрально
ограниченные импульсы и импульсы с чирпом. Схемы
генераторов фемтосекундных импульсов; усиление
фемтосекундных импульсов. Генераторы фемтосекундных
импульсов и оптические стандарты частоты.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций, практических занятий, а также самостоятельная работа студентов, заключающаяся в выполнении повторении ранее пройденного материала и подготовке к контрольным мероприятиям. Для того чтобы дать представление и современном состоянии взаимодействия лазерного излучения с веществом предусмотрено широкое использование современных научных работ и публикаций по данной теме, посещение лабораторий НИЯУ МИФИ, ФИАН. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в НИЯУ МИФИ и ФИАН, а также в других организациях.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)

ПК-4.1	3-ПК-4.1	3, КИ-8, КИ-15
	У-ПК-4.1	3, КИ-8, КИ-15
	В-ПК-4.1	3, КИ-8, КИ-15
ПК-4.2	3-ПК-4.2	3, КИ-8, КИ-15
	У-ПК-4.2	3, КИ-8, КИ-15
	В-ПК-4.2	3, КИ-8, КИ-15
УК-6	3-УК-6	3, КИ-8, КИ-15
	У-УК-6	3, КИ-8, КИ-15
	В-УК-6	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	4 – «хорошо»	C	студенту, если он твёрдо знает
		D	материал, грамотно и по существу
70-74			излагает его, не допуская
70-74			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по

	соответствующей дисциплине.
	гоответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 44 Квантовая и оптическая электроника: , Санкт-Петербург: Лань, 2022
- 2. ЭИ Б 82 Лазеры: устройство и действие: , Санкт-Петербург: Лань, 2022
- 3. ЭИ К 59 Основы теории колебаний для физики лазеров : учеб. пособие, Москва: НИЯУ МИФИ, 2020
- 4. ЭИ А 16 Современная оптика гауссовых пучков: учебное пособие, Москва: Физматлит, 2010
- 5. 537 3-43 Принципы лазеров : , О. Звелто, Санкт-Петербург [и др.]: Лань, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 621.37 3-91 Генерация и усиление коротких лазерных импульсов : Учеб.пособие, Зубарев И.Г., М.: МИФИ, 1991
- 2. 621.37 K85 Фемтосекундные импульсы : введение в новую область лазерной физики, П. Г. Крюков, Москва: Физматлит, 2008
- 3. 535 Ш47 Принципы нелинейной оптики: , Шен И.Р.;Пер.с англ., М.: Наука, 1989
- 4. 535 К38 Оптические солитоны : от световодов к фотонным кристаллам, Ю. С. Кившарь, Г. П. Агравал, М.: Физматлит, 2005

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Комплекс дисциплины предполагает ряд основных видов работы:

- аудиторная работа в виде лекций и практических занятий,
- самостоятельная работа,
- выполнение контрольных работ.

Перечисленные виды работы составляют целостную систему обучения, обеспечивающую разностороннюю подготовку обучащегося и призваны к приобретению новых компетенций и повышению уровня его компетентности.

Структура курса предполагает освоение каждой предлагаемой темы в несколько этапов.

Проводятся практические занятия, на которых в форме "круглого стола" обсуждаются предалагаемые темы, проверяется подготовленность к занятиям, выполнение домашнего задания. Также предполагается самостоятельная работа студента по предложенным темам с последующим контролем со стороны преподавателя.

Текущий контроль: в течение семестра выполняются следующие контрольных мероприятий:

- оценка участия в практических занятиях;
- выполнение лабораторных работ;
- выполнение контрольных работ.

Результаты выполнения контрольных мероприятий являются основанием для допуска к промежуточному контролю по дисциплине.

Промежуточный контроль осуществляется в виде ответа на вопросы.

Система оценки успеваемости студента

Для оценки успеваемости студента применяется 100-балльная система, которая позволяет учитывать работу студента в течение семестра и прохождение аттестации.

Учебная работа студента в семестре оценивается по следующим категориям: показатели посещаемости и эффективности работы на каждом занятии, результаты выполнения контрольных мероприятий.

Максимальное количество баллов, которое студент может получить в ходе аудиторной и самостоятельной работы в семестре, составляет 50 баллов.

Минимальное количество баллов, которое необходимо для допуска студента к промежуточной аттестации, составляет 30 баллов.

По итогам семестра проводится промежуточная аттестация.

В совокупности за промежуточную аттестацию студент может получить 50 баллов.

Итого, максимальная оценка по курсу по итогам семестра составляет 100 баллов, для аттестации по курсу необходимо набрать минимум 60 баллов.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Комплекс дисциплины предполагает ряд основных видов работы:

- аудиторная работа в виде лекций и практических занятий,
- самостоятельная работа,
- выполнение контрольных работ.

Перечисленные виды работы составляют целостную систему обучения, обеспечивающую разностороннюю подготовку обучащегося и призваны к приобретению новых компетенций и повышению уровня его компетентности.

Структура курса предполагает освоение каждой предлагаемой темы в несколько этапов.

Проводятся практические занятия, на которых в форме "круглого стола" обсуждаются предалагаемые темы, проверяется подготовленность к занятиям, выполнение домашнего задания. Также предполагается самостоятельная работа студента по предложенным темам с последующим контролем со стороны преподавателя.

Текущий контроль: в течение семестра выполняются следующие контрольных мероприятий:

- оценка участия в практических занятиях;
- выполнение лабораторных работ;
- выполнение контрольных работ.

Результаты выполнения контрольных мероприятий являются основанием для допуска к промежуточному контролю по дисциплине.

Промежуточный контроль осуществляется в виде ответа на вопросы.

Система оценки успеваемости студента

Для оценки успеваемости студента применяется 100-балльная система, которая позволяет учитывать работу студента в течение семестра и прохождение аттестации.

Учебная работа студента в семестре оценивается по следующим категориям: показатели посещаемости и эффективности работы на каждом занятии, результаты выполнения контрольных мероприятий.

Максимальное количество баллов, которое студент может получить в ходе аудиторной и самостоятельной работы в семестре, составляет 50 баллов.

Минимальное количество баллов, которое необходимо для допуска студента к промежуточной аттестации, составляет 30 баллов.

По итогам семестра проводится промежуточная аттестация.

В совокупности за промежуточную аттестацию студент может получить 50 баллов.

Итого, максимальная оценка по курсу по итогам семестра составляет 100 баллов, для аттестации по курсу необходимо набрать минимум 60 баллов.

Автор(ы):

Фроня Анастасия Андреевна, к.ф.-м.н.

Рецензент(ы):

д.ф.м.н., профессор Проценко Е.Д.