Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МЕТОДЫ РЕГИСТРАЦИИ ИОННЫХ ТОКОВ

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	2	72	10	0	20		42	0	3
Итого	2	72	10	0	20	0	42	0	

АННОТАЦИЯ

В курсе рассматриваются детектирующие и регистрирующие устройства, средства автоматизации масс-спектрометрического эксперимента; методы передачи аналоговых сигналов, как в задачах сбора и регистрации экспериментальных данных, так и для контроля и управления процессом проведения эксперимента. Изучаются приемы использования компьютерных средств, внешние устройства вычислительной техники и их сопряжение.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью курса является получение студентами знаний о методах детектирования и регистрации аналитических сигналов в масс-спектральных приборах, приложение в различных типах масс-спектральных устройств и в экспериментальных исследованиях.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Методы детектирования ионов и регистрации масс-спектральной информации являются важнейшими составляющими масс-спектральной техники, определяющей аналитические характеристики приборов, является важной, современной и перспективной дисциплиной в научно-исследовательской и инженерно—внедренческой работе студента.

В качестве базовых знаний для усвоения дисциплины необходимы знания стандартного цикла курсов общей физики, умение пользоваться персональным компьютером.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции	
нау	научно-исследовательский			
Проведение научных и	Природные и	ПК-1 [1] - Способен	3-ПК-1[1] - Знать	
аналитических	социальные	самостоятельно и (или) в	основные методы и	
исследований по	явления и	составе	принципы научных	
отдельным разделам	процессы	исследовательской	исследований,	
(этапам, заданиям)		группы разрабатывать,	математического	
темы (проекта) в		исследовать и	моделирования,	
соответствии с		применять	основные проблемы	

утвержденными профессиональной математические модели для качественного и области, требующие планами и методиками исследований, количественного использования построение описания явлений и современных научных физических, процессов и (или) методов исследования математических и разработки новых для качественного и компьютерных технических средств количественного моделей изучаемых описания явлений и процессов и явлений в Основание: процессов и (или) Профессиональный рамках предметной разработки новых области по профилю стандарт: 40.011 технических средств.; специализации У-ПК-1[1] - Уметь ставить и решать прикладные исследовательские задачи, оценивать результаты исследований; проводить научные исследования и получать новые научные и прикладные результаты самостоятельно и в составе научного коллектива; В-ПК-1[1] - Владеть навыками выбора и использования математических моделей для научных исследований и (или) разработки новых технических средств самостоятельно и (или) в составе исследовательской группы. Участие в проведении ПК-3 [1] - Способен 3-ПК-3[1] - Знать Природные и наблюдений и профессионально основные методы социальные измерений, явления и работать с исследований, принципы работы выполнении процессы исследовательским и приборов и установок в эксперимента и испытательным обработке данных с избранной предметной оборудованием, использованием приборами и области; современных установками в У-ПК-3[1] - Уметь избранной предметной выбирать необходимые компьютерных технологий области в соответствии с технические средства целями программы для проведения специализированной экспериментальных подготовки магистра исследований в избранной предметной

		Основание: Профессиональный стандарт: 40.011	области, обрабатывать полученные экспериментальные результаты; В-ПК-3[1] - Владеть навыками работы с исследовательским и испытательным оборудованием, приборами и установками в избранной предметной области
Проведение фундаментальных и прикладных математических и физических исследований, направленных на решение инженерных, технических и информационных задач	инновационный; Природные и социальные явления и процессы	ПК-5 [1] - Способен применять физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий Основание: Профессиональный стандарт: 40.011	3-ПК-5[1] - Знать физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования, принципы экспертизы продукции для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий; У-ПК-5[1] - Уметь применять физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий; В-ПК-5[1] - Владеть навыками теоретического и экспериментального исследования, математического и экспериментального исследования, математического анализа и моделирования для постановки задач по развитию, внедрению и развитию, внедрению и развитию, внедрению и

	коммерциализации
	новых наукоемких
	технологий

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

NC.	Помисокования			. •			
№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	2 Семестр						
1	Раздел 1	1-8	6/0/10		25	Зд-8	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 3, У- ПК-3, В- ПК-3
2	Раздел 2	9-15	4/0/10		25	Зд-15	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 3, У- ПК-3, В- ПК-3, 3-ПК- 5, У- ПК-5, В-
	Итого за 2 Семестр		10/0/20		50		1111-5
	Контрольные мероприятия за 2 Семестр		-3,3,2		50	3	3-ПК- 1, У- ПК-1, В-

			ПК-1,
			3-ПК-
			3,
			у-
			ПК-3,
			B-
			ПК-3,
			3-ПК-
			5,
			ý-
			ПК-5,
			B-
			ПК-5

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
3д	Задание (задача)
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	2 Семестр	10	0	20
1-8	Раздел 1	6	0	10
1 - 2	Тема 1	Всего а	удиторных	часов
	Типы детекторов ионов, применяемых в масс-	1	0	0
	спектрометрии, и их принцип действия.	Онлайн	I	
		0	0	0
2 - 3	Тема 2	Всего а	удиторных	часов
	Принцип работы масс-спектральных устройств и	1	0	2
	взаимозависимость их с детектированием ионов.	Онлайн	I	
		0	0	0
3 - 4	Тема 3	Всего а	удиторных	часов
	Детектирование и регистрация ионных пакетов в	1	0	2
	динамических масс-спектрометрах. Метод наведенного	Онлайн	H	
	потенциала и фурье-преобразование.	0	0	0
4 - 5	Тема 4	Всего а	удиторных	часов
	Регистрация постоянных ионных токов в масс-	1	0	2
	спектрометрии. Свойства и параметры электрометрических	Онлайн	I	
	усилителей.	0	0	0
5 - 6	Тема 5	Всего а	удиторных	часов
	Метод наведенного потенциала, принцип действия и его	1	0	2
	особенности. Фурье-преобразование и формирование масс-	Онлайн	H	

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	спектров.	0	0	0
7 - 8	Тема 6	Всего а	удиторных	часов
	Цифровые устройства для записи и регистрации масс-	1	0	2
	спектров. Высокоскоростные АЦП и их характеристики	Онлайн	I	
		0	0	0
9-15	Раздел 2	4	0	10
8 - 9	Тема 7	Всего а	удиторных	часов
	Средства автоматизации масс-спектрометрических	1	0	2
	измерений. АЦП и ЦАП для регистрации слабых сигналов	Онлайн	I	
	и записи масс-спектров.	0	0	0
9 - 10	Тема 8	Всего а	аудиторных	часов (
	Автоматизация записи масс-спектров с помощью	1	0	2
	компьютера и формирование их «твердого» отображения.	Онлайн	ł	
		0	0	0
10 - 11	Тема 9	Всего а	аудиторных	часов
	Интерфейсы, применяемые для автоматизации измерений в	1	0	2
	масс-спектрометрах.	Онлайн	ł	
		0	0	0
11 - 12	Тема 10	Всего а	удиторных	часов
	Программное обеспечение для сбора и записи масс-	1	0	2
	спектров. Первичная обработка масс-спектральных	Онлайн	ł	
	данных.	0	0	0
13 - 15	Тема 11	Всего а	удиторных	часов
	Вторичная обработка масс-спектральных данных. В	0	0	2
	статических и динамических масс-спектрометрах.	Онлайн	I	
		0	0	0

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (компьютерные практикумы, разбор домашних заданий, система контрольно-измерительных материалов, включая тесты) а также, проведение занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	3, 3д-8, 3д-15
	У-ПК-1	3, 3д-8, 3д-15
	В-ПК-1	3, 3д-8, 3д-15
ПК-3	3-ПК-3	3, 3д-8, 3д-15
	У-ПК-3	3, 3д-8, 3д-15
	В-ПК-3	3, 3д-8, 3д-15
ПК-5	3-ПК-5	3, 3д-15
	У-ПК-5	3, 3д-15
	В-ПК-5	3, 3д-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
70-74	4 – «хорошо»	D	материал, грамотно и по существу
			излагает его, не допуская
			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в

			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	изложении программного материала. Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без
			дополнительных занятий по соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 90 Методы и достижения современной аналитической химии : учебное пособие, Санкт-Петербург: Лань, 2021
- $2.\,543~{\rm K}\,20$ Поверхностно-ионизационная дрейф-спектрометрия : монография, Москва: ИНФРА-М, 2017
- 3. 681.5 Т58 Схемотехника аналого-цифровых преобразователей: , Москва: Техносфера, 2014
- 4. 621.38 В14 Вакуумная электроника Ч.1,,: МГТУ, 2008
- 5. 004 И74 Информационные технологии в физических исследованиях : лабораторный практикум, А. А. Сысоев [и др.], Москва: НИЯУ МИФИ, 2009
- 6. ЭИ Ф91 Введение в технику физического эксперимента : лабораторный практикум, А. С. Фролов, Т. Г. Моисеева, А. А. Сысоев, Москва: МИФИ, 2009

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

1. Wavelet-based spectral analysis 2014 (http://www.sciencedirect.com/science/article/pii/S0165993614001757)

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Для успешного обучения по данной дисциплине студент должен: твердо усвоить основные принципы выбора детекторов для решения аналитических задач, а также аналоговых и цифровых регистрирующих устройств, обеспечивающих автоматизированную обработку масс-спектральной информации. Курс разбит на 2 раздела, включающие в себя такие темы, как: Типы детекторов ионов, применяемых в масс-спектрометрии, и их принцип действия, Принцип работы масс-спектральных устройств и взаимозависимость их с детектированием ионов, Детектирование и регистрация ионных пакетов в динамических масс-спектроме¬трах. Вторично-электронные умножители, их свойства и параметры. и.т.д.

Аттестация разделов представлена следующими формами контроля:

- Задание

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачипроблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Студенту после 8 недели выдается список задач по теме курса. Оценивается умение и владение навыками физических расчетов, логически четко и исчерпывающе отвечать на дополнительные вопросы.

Успешное прохождение студентом аттестации отвечает диапазону 18-30 баллов по итогам каждой аттестации.

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 681.5 Т58 Схемотехника аналого-цифровых преобразователей : , Москва: Техносфера, 2014
 - 2. 621.38 В14 Вакуумная электроника Ч.1, , : МГТУ, 2008
- 3. 004 И74 Информационные технологии в физических исследованиях : лабораторный практикум, А. А. Сысоев [и др.], Москва: НИЯУ МИФИ, 2009
- 4. ЭИ Ф91 Введение в технику физического эксперимента : лабораторный практикум, А. С. Фролов, Т. Г. Моисеева, А. А. Сысоев, Москва: МИФИ, 2009

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Для успешного обучения по данной дисциплине студент должен: твердо усвоить основные принципы выбора детекторов для решения аналитических задач, а также аналоговых и цифровых регистрирующих устройств, обеспечивающих автоматизированную обработку масс-спектральной информации. Курс разбит на 2 раздела, включающие в себя такие темы, как: Типы детекторов ионов, применяемых в масс-спектрометрии, и их принцип действия, Принцип работы масс-спектральных устройств и взаимозависимость их с детектированием ионов, Детектирование и регистрация ионных пакетов в динамических масс-спектрометрах. Вторично-электронные умножители, их свойства и параметры. и.т.д.

Аттестация разделов представлена следующими формами контроля:

- Задание

На выбор преподавателя студенту выдается 2 вопроса из списка вопросов. Время на подготовку – не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачипроблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Студенту после 8 недели выдается список задач по теме курса. Оценивается умение и владение навыками физических расчетов, логически четко и исчерпывающе отвечать на дополнительные вопросы.

Успешное прохождение студентом аттестации отвечает диапазону 18-30 баллов по итогам каждой аттестации.

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 681.5 Т58 Схемотехника аналого-цифровых преобразователей : , Москва: Техносфера, 2014
 - 2. 621.38 В14 Вакуумная электроника Ч.1, , : МГТУ, 2008
- 3. 004 И74 Информационные технологии в физических исследованиях : лабораторный практикум, А. А. Сысоев [и др.], Москва: НИЯУ МИФИ, 2009
- 4. ЭИ Ф91 Введение в технику физического эксперимента : лабораторный практикум, А. С. Фролов, Т. Г. Моисеева, А. А. Сысоев, Москва: МИФИ, 2009

Автор(ы):

Сысоев Александр Алексеевич, д.ф.-м.н., профессор