Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КОМПЬЮТЕРНЫХ СИСТЕМ И ТЕХНОЛОГИЙ

ОДОБРЕНО УМС ИИКС

Протокол № 8/1/2025

от 25.08.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МИКРОПРОЦЕССОРНЫЕ УСТРОЙСТВА И СИСТЕМЫ

Направление подготовки (специальность)

[1] 09.03.01 Информатика и вычислительная техника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	4	144	32	0	48		28	0	Э
Итого	4	144	32	0	48	32	28	0	

АННОТАЦИЯ

Обучение навыкам разработки микропроцессорных устройств и систем на современной элементной базе.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является обучение студентов навыкам разработки микропроцессорных устройств и систем на современной элементной базе.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для успешного освоения дисциплины Микропроцессорные устройства и системы необходимы компетенции, формируемые в результате освоения следующих дисциплин:

Информатика

ЭВМ и периферийные устройства

Теория автоматов

Электротехника, электроника и схемотехника (схемотехника)

Низкоуровневое программирование

Изучение дисициплины Микропроцессорные устройства и системы необходимо для успешного освоения следующих дисциплин:

Системы хранения данных

Основы робототехники

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
УКЕ-1 [1] – Способен использовать	3-УКЕ-1 [1] – знать: основные законы
знания естественнонаучных	естественнонаучных дисциплин, методы
дисциплин, применять методы	математического анализа и моделирования,
математического анализа и	теоретического и экспериментального исследования
моделирования, теоретического и	У-УКЕ-1 [1] – уметь: использовать математические
экспериментального исследования	методы в технических приложениях, рассчитывать
в поставленных задачах	основные числовые характеристики случайных величин,
	решать основные задачи математической статистики;
	решать типовые расчетные задачи
	В-УКЕ-1 [1] – владеть: методами математического
	анализа и моделирования; методами решения задач
	анализа и расчета характеристик физических систем,
	основными приемами обработки экспериментальных
	данных, методами работы с прикладными программными
	продуктами

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

профессиональной			Код и
1 1 1	знания	профессиональной	наименование
деятельности (ЗПД)		компетенции;	индикатора
		Основание	достижения
		(профессиональный	профессиональной
		стандарт-ПС, анализ	компетенции
		опыта)	
	научно-исследовательсь		
	Вычислительные	ПК-1 [1] - Способен	3-ПК-1[1] - Знать:
	машины, комплексы,	обосновывать	основы верификации
± ±	системы и сети;	принимаемые	и аттестации
	автоматизированные	проектные решения,	аппаратного и
± •	системы обработки	осуществлять	программного
	информации и	постановку и	обеспечения,
	управления; системы	выполнять	стандарты качества и
	автоматизированного	эксперименты по	процессов его
-	проектирования и	проверке их	обеспечения,
-	информационной	корректности и	способы
-	поддержки	эффективности	оптимизации,
	жизненного цикла		принципы и виды
1	промышленных	Основание:	отладки, методы
	изделий; программное	Профессиональный	оценки качества,
исследований.	обеспечение средств	стандарт: 06.001	методики постановки
Проведение	вычислительной		экспериментов;
1	техники и		У-ПК-1[1] - Уметь:
	автоматизированных		разрабатывать и
	систем (программы,		специфицировать
-	программные		требования,
и наблюдений,	комплексы и		осуществлять
составление описания	системы);		составление
проводимых	математическое,		описания
исследований,	информационное,		проводимых
подготовка данных для	техническое,		исследований,
составления обзоров,	лингвистическое,		подготовку данных
отчетов и научных	программное,		для составления
публикаций.	эргономическое,		обзоров и отчетов,
Составление отчета по	организационное и		обосновывать
выполненному	правовое обеспечение		принимаемые
заданию, участие во	перечисленных		проектные решения,
внедрении результатов	систем.		выполнять
исследований и			эксперименты по
разработок. Участие в			проверке
составе коллектива			корректности
исполнителей во			решений;
внедрении результатов			В-ПК-1[1] - Владеть:
научно-технических			навыками
исследований в			построения моделей
высокотехнологичных			объектов
сферах экономики и			профессиональной

коммерциализации деятельности с разработок. использованием инструментальных средств, навыками тестирования, отладки и верификации проектный ПК-5 [1] - Способен 3-ПК-5[1] - Знать: бор и анализ исходных Вычислительные разрабатывать, требования ГОСТ данных для машины, комплексы, проектирования. согласовывать и ЕСКД, ЕСТД и системы и сети; ЕСПД по разработке Проектирование автоматизированные выпускать все виды программных и системы обработки и выпуску всех видов проектной проектной аппаратных средств информации и документации (систем, устройств, управления; системы документации в деталей, программ, баз автоматизированного Основание: области Профессиональный данных) в проектирования и информатики и стандарт: 06.003 соответствии с информационной вычислительной техническим заданием поддержки техники; с использованием жизненного цикла У-ПК-5[1] - Уметь: промышленных выполнять средств автоматизации изделий; программное проектирования. разработку, Разработка и обеспечение средств согласование и оформление проектной вычислительной выпуск всех видов и рабочей технической проектной техники и документации. автоматизированных документации; В-ПК-5[1] - Владеть: Контроль соответствия систем (программы, разрабатываемых программные современными проектов и комплексы и инструментальными технической системы); средствами по разработке и документации математическое, выпуску проектной стандартам, информационное, документации техническим условиям техническое, и другим нормативным лингвистическое, документам. программное, Проведение эргономическое, предварительного организационное и правовое обеспечение техникоперечисленных экономического систем. обоснования проектных расчетов. Планирование, проектирование, производство и применение высокотехнологичных компьютерных систем на глобальном рынке.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели Задачи воспитания (код) Воспитательный потенциал

воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных исследований. 2.Использование
		воспитательного потенциала дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных
		бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных открытий
		и теорий.
Профессиональное	Создание условий,	1. Использование воспитательного

воспитание

обеспечивающих, формирование профессионально значимых установок: не производить, не копировать и не использовать программные и технические средства, не приобретённые на законных основаниях: не нарушать признанные нормы авторского права; не нарушать тайны передачи сообщений, не практиковать вскрытие информационных систем и сетей передачи данных; соблюдать конфиденциальность доверенной информации (В40)

потенциала дисциплин "Информатика (Основы программирования)", Программирование (Объектноориентированное программирование)", "Программирование (Алгоритмы и структуры данных)" для формирования культуры написания и оформления программ, а также привития навыков командной работы за счет использования систем управления проектами и контроля версий. 2.Использование воспитательного потенциала дисциплины "Проектная практика" для формирования культуры решения изобретательских задач, развития логического мышления, путем погружения студентов в научную и инновационную деятельность института и вовлечения в проектную работу. 3. Использование воспитательного потенциала профильных дисциплин для формирования навыков цифровой гигиены, а также системности и гибкости мышления, посредством изучения методологических и технологических основ обеспечения информационной безопасности и кибербезопасности при выполнении и защите результатов учебных заданий и лабораторных работ по криптографическим методам защиты информации в компьютерных системах и сетях. 4. Использование воспитательного потенциала лисциплин " "Информатика (Основы программирования)", Программирование (Объектноориентированное программирование)", "Программирование (Алгоритмы и структуры данных)" для формирования культуры безопасного программирования посредством тематического

акцентирования в содержании
дисциплин и учебных заданий.
5.Использование воспитательного
потенциала дисциплины
"Проектная практика" для
формирования системного подхода
по обеспечению информационной
безопасности и кибербезопасности
в различных сферах деятельности
посредством исследования и
перенятия опыта постановки и
решения научно-практических
задач организациями-партнерами.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

TA C-	•		овем, сроки		1 1	1	
No	Наименование раздела			್ಷ *ಷ	.Ne		
п.п	учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Изучение однокристальных микроконтроллеров	1-8	16/0/24		20	КИ-8	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-5, У-ПК-5, В-ПК-5, 3-УКЕ-1, У-УКЕ-1, В-УКЕ-1
2	Мультимикропроцессорные системы	9-16	16/0/24		30	КИ-16	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-5, У-ПК-5, В-ПК-5, 3-УКЕ-1, У-УКЕ-1, В-УКЕ-1
	Итого за 7 Семестр		32/0/48		50		
	Контрольные мероприятия за 7 Семестр				50	Э	3-ПК-1, У-ПК-1, В-ПК-1,

			3-ПК-5,
			У-ПК-5,
			В-ПК-5,
			3-УКЕ-1,
			У-УКЕ-1,
			У-УКЕ-1, В-УКЕ-1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	7 Семестр	32	0	48	
1-8	Изучение однокристальных микроконтроллеров	16	0	24	
1	Введение	Всего а	удиторных	часов	
	Архитектура микропроцессора. Классификация, типы и	2	0	3	
	характеристики микропро-цессоров (МП).	Онлайі	H		
		0	0	0	
2	Однокристальные микроконтроллеры	Всего а	іудиторных	часов	
	Назначение и общая характеристика однокристальных	2	0	3	
	микроконтроллеров. Особенности архитектуры	Онлайі	H	•	
	микроконтроллеров с архитектурой MCS-51. Основные	0	0	0	
	структурные элементы. Организация памяти программ и				
	данных. Система команд и режимы адресации. Система				
	прерывания. Таймеры-счетчики. Порты ввода/вывода.				
3	Основные направления развития архитектуры	Всего аудиторных часов			
	микропроцессоров	2	0	3	
	Архитектура СМР, SMT, EPIC. Микропроцессор Itanium:	Онлайн			
	структура, архитектурные особенности. Типичные	0	0	0	
	особенности RISC-архитектуры и многоядерных				
	микропроцессоров на примере МП POWER4 и PowerPC				
	970.				
4	Процессоры цифровой обработки сигналов		удиторных	1	
	Назначение и особенности цифровой обработки сигналов.	2	0	3	
	Особенности архитектуры процессоров цифровой	Онлайн	I		
	обработки сигналов на примере процессора TMS320F2835.	0	0	0	
5 - 8	Микропроцессорные системы на основе	Всего аудиторных часов			
	универсальных однокристальных микропроцессоров	8	0	12	
	Развитие архитектуры универсальных 32-разрядных	Онлайі	H		
	микропроцессоров IA 32. Основные функциональные	0	0	0	
	блоки универсального МП с архитектурой IA 32.				
	Регистровая структура 32-разрядного МП. Организация				

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	памяти. Физическое и логическое адресное пространство			
	(ЛАП). Формирования физического адреса при сегментно-			
	страничной организации ЛАП.			
	Организация внутренней кэш-памяти. Защита программ и			
	данных. Защита по привилегиям. Защита при управлении			
	памятью. Многозадачный режим работы			
	микропроцессора, аппаратные средства поддержки			
	многозадачности.			
	Прерывания и исключения в МПС. Виды исключений.			
	Функционирование микропроцессора при обработке			
	прерываний и исключений. Дескрипторная таблица			
	прерываний. Шлюз вызова. Контроллер приоритетных			
	прерываний: функции, структура и алгоритм работы.			
	Структура микропроцессорной системы. Типы обмена			
	информацией между микропроцессором, памятью и			
	внешними устройствами. Обмен информацией в режиме			
	прямого доступа в память. Структура и функционирование			
	контроллера прямого доступа в память. Функции чипсета.			
	Структура микропроцессорной системы при			
	использовании чипсета.			
	Организация конвейерной обработки информации в МП:			
	структура классического конвейера, оценка			
	производительности МП при конвейерной обработке.			
	Особенности архитектуры МП с технологией ММХ, SSE,			
	SSE-2.			
	Микропроцессор Pentium 4: структура, архитектурные			
	особенности.			
	Отличительные черты МП с RISC-архитектурой.			
9-16	Мультимикропроцессорные системы	16	0	24
9 - 12	Мультимикропроцессорные системы		<u>го</u> гудиторных	
7 12	Основные конфигурации мультимикропроцессорных	8	<u>0</u>	12
	систем, особенности организации, области применения.	Онлайн	_	12
	Поддержка соответствия информации кэш памяти и ОЗУ в	Онлаин	0	0
	многопроцессорной системе. MESI – протокол.	U	0	U
	Транспьютеры. Построение мультипроцессорных систем			
	на основе транспьютеров.			
13 - 14	Средства разработки и отладки микропроцессорных	Всего а	ı удиторных	Часов
13 11	систем	4	<u>()</u>	6
	Особенности аппаратуры МПС как объекта контроля.	Онлайн	ū	10
	Особенности контроля на различных этапах жизненного	Оплаин	0	0
	цикла МПС. Инструментальные средства разработки и		0	
	отладки МПС.			
15 - 16	Оценка производительности микропроцесссоров	Всего	і удиторных	Часов
15 - 10	Методы и средства оценки производительности	4	гудиторных 0	6
	микропроцессоров и микропроцес-сорных систем	Онлайн	~	10
	различных классов. Оценка производительности на основе	Онлаин	0	0
	тактовой частоты, количества операци, выполняемых в	0	U	0
	единицу времени, бэнчмарковских программ.			
	единицу времени, ознамарковских программ.	L		

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование

ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание		
	7 Семестр		
1 - 3	Битовый процессор микроконтроллера		
	Изучение и практическое освоение системы команд битовой обработки и		
	программирования обмена данными с внешними устройствами по системной шине для архитектуры MCS-51		
4 - 6	Времязадающие функции в системах на основе микроконтроллера		
	Изучение и практическое освоение программирования встроенных таймеров		
	микроконтроллера для формирования временных интервалов		
7 - 9	Система прерываний микроконтроллера		
	Изучение и практическое освоение организации обмена данными между		
	микроконтроллером и внешним устройством в режиме прерываний		
10 - 12	Децентрализованное управление при вводе выводе в системах на основе		
	микроконтроллера		
	Изучение и практическое освоение ввода и вывода информации в системах на основе		
	микроконтроллера на примере программирования обмена с контроллером		
	клавиатуры-индикации КР580ВГ92 и контроллера ЖКИ		
13 - 15	Микропроцессорные системы на ПЛИС		
	Изучение и практическое освоение проектирования микропроцессорных систем на		
	ПЛИС на примере программной реализации распознающего автомата		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При чтении лекционного материала используется электронное сопровождение курса: справочно-иллюстративный материал воспроизводится и озвучивается в аудитории с использованием проектора и переносного компьютера в реальном времени. Электронный материал доступен студентам для использования и самостоятельного изучения на сайте кафедры.

На сайте кафедры также находится методический и справочный материал, необходимый для проведения лабораторного практикума по курсу.

Лабораторный практикум проводится по расписанию в дисплейном классе одновременно для группы студентов, работающих в интерактивном режиме. Допустимо выполнение лабораторных работ в составе локальной сети кафедры или в удаленном режиме, используя Интернет.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	Э, КИ-8, КИ-16
	У-ПК-1	Э, КИ-8, КИ-16
	В-ПК-1	Э, КИ-8, КИ-16
ПК-5	3-ПК-5	Э, КИ-8, КИ-16
	У-ПК-5	Э, КИ-8, КИ-16
	В-ПК-5	Э, КИ-8, КИ-16
УКЕ-1	3-УКЕ-1	Э, КИ-8, КИ-16
	У-УКЕ-1	Э, КИ-8, КИ-16
	В-УКЕ-1	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
	5 — «отлично»	A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
90-100			последовательно, четко и логически
70-100			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	4 – «хорошо»	С	если он твёрдо знает материал, грамотно и
		D	по существу излагает его, не допуская
70-74			существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2.—	F	Оценка «неудовлетворительно»
Ниже 60	«неудовлетворительно»		выставляется студенту, который не знает
	<i>«пеуоовленьоринельно»</i>		значительной части программного

	материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ D26 Digital Design and Computer Architecture: , Sarah L. Harris , David Money Harris , : Elsevier, 2007
- 2. ЭИ Г95 Микропроцессорные системы: учебник, Гуров В.В., Москва: ИНФРА-М, 2016
- 3. ЭИ С 14 Микропроцессорные системы: цифровые устройства и микропроцессоры : учебное пособие для спо, Сажнев А. М., Москва: Юрайт, 2023
- 4. ЭИ К 72 Микропроцессоры и микроконтроллеры. Методы программирования систем промышленной автоматизации. ПЛК ОВЕН : лабораторный практикум, Косырев К.А., Руденко А.В., Москва: НИЯУ МИФИ, 2021
- 5. ЭИ С 19 Основы теории надежности и технической диагностики : учебник, Ефанов Д. В., Сапожников В. В., Санкт-Петербург: Лань, 2022
- 6. ЭИ Г95 Проектирование микропроцессорных систем : лабораторный практикум, Егорова И.А., Гуров В.В., Тышкевич В.Г., Москва: НИЯУ МИФИ, 2010
- 7. ЭИ Д53 Универсальный лабораторный стенд. Аппаратные средства проектирования встраиваемых систем: учебное пособие, Ехин М.Н., Дмитриев Н.А., Москва: МИФИ, 2009
- 8. ЭИ У59 Универсальный лабораторный стенд. Инструментальные средства проектирования и отладки: учебное пособие, Ёхин М.Н. [и др.], Москва: МИФИ, 2009

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 004 А92 Архитектура вычислительных систем : Учеб. пособие, Атовмян И.О., Москва: МИФИ, 2002
- $2.\,004\,\Gamma 95\,$ Архитектура микропроцессоров : учебное пособие, Гуров В.В., Москва: Интернет-Университет информационных технологий, $2010\,$
- 3. 681.3 Г83 Микропроцессор і486. Архитектура и программирование Кн.1, , М.: Гранал, Бином, 1993
- 4. $681.3~\Gamma 83~$ Микропроцессор i486. Архитектура и программирование Кн.2,3,4, , М.: Гранал, Бином, 1993~

- 5. 681.3 Б88 Микропроцессор і486. Архитектура, программирование, интерфейс:, Шагурин И.И., Бродин В.Б., М.: Диалог-МИФИ, 1993
- 6. 004 М59 Микропроцессорные системы: Учеб. пособие для вузов, , СПб: Политехника, 2002
- 7. 004 Б89 Микропроцессоры Intel 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 : архитектура, программирование и интерфейсы, Брэй Б., Санкт-Петербург: БХВ-Петербург, 2005
- 8. 681.3 О-43 Однокристальные микроЭВМ: Справочник, , М.: Бином, 1994
- 9. 004 Н73 Основы микропроцессорной техники: учебное пособие, Новиков Ю.В., Скоробогатов П.К., Москва: Интернет-Университет информационных технологий, 2012
- 10. 004 Г95 Проектирование микропроцессорных систем : лабораторный практикум, Егорова И.А., Гуров В.В., Тышкевич В.Г., Москва: НИЯУ МИФИ, 2010
- 11. 621.3 С78 Проектирование цифровых устройств на однокристальных микроконтроллерах : , Сташин В.В., Мологонцева О.Ф., Урусов А.В., М.: Энергоатомиздат, 1990
- 12. 004 Ш15 Процессоры семейства Intel P6: Pentium II, Pentium III, Celeron и др. : Архитектура, программирование, интерфейс, Шагурин И.И., Бердышев Е.М., М.: Горячая линия-Телеком, 2000
- 13. 004 К67 Современные микропроцессоры : , Киселев А.В., Корнеев В.В., М.: Нолидж, 2000

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

- 1. Сайт корпорации Intel Corporation (http://www.intel.com)
- 2. Сайт компании AMD (http://www.amd.com/ru/)
- 3. Сайт компании Atmel (http://www.atmel.com/ru/ru/)
- 4. Сайт компании Analog Devices Inc. (http://www.analog.com)
- 5. Texas Instruments Inc. (http://www.ti.com)

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Указания для прослушивания лекций

Перед началом занятий ознакомиться с учебным планом и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. На каждой лекции следует задавать вопросы как по материалу текущей лекции, так и по ранее прочитанным лекциям.

При изучении лекционного материала обязательно следует сопоставлять его с материалом семинарских и лабораторных занятий.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и материалами из сети Internet.

2. Указания для проведения лабораторного практикума

Соблюдать требования техники безопасности, для чего прослушать необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы провести самостоятельно подготовку к работе изучив основные теоретические положения, знание которых необходимо для осмысленного выполнения работы.

В процессе выполнения работы следует постоянно общаться с преподавателем, не допуская по возможности неправильных действий.

При сдаче зачета по работе подготовить отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

3. Указания по выполнению самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы.

Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса. Дать перечень рекомендованной основной литературы и вновь появившихся литературных источников.

Перед изложением текущего лекционного материала кратко напомнить об основных выводах по материалам предыдущей лекции.

Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

Периодически освещать на лекциях наиболее важные вопросы лабораторного практикума, вызывающие у студентов затруднения.

В середине семестра (ориентировочно после 8-й лекции) обязательно провести контроль знаний студентов по материалам всех прочитанных лекций.

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Давать рекомендации студентам для подготовки к очередным лабораторным работам.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения лабораторного практикума

На первом занятии рассказать о лабораторном практикуме в целом (о целях практикума, инструментальных средствах для выполнения лабораторных работ, о порядке отчета по лабораторным работам), провести инструктаж по технике безопасности при работе в лаборатории.

Для выполнения каждой лабораторной работы студентам выдавать индивидуальные задания.

При принятии отчета по каждой лабораторной работе обязательно побеседовать с каждым студентом, задавая контрольные вопросы, направленные на понимание изучаемой в лабораторной работе проблемы.

По каждой работе фиксировать факт выполнения и ответа на контрольные вопросы.

Общий зачет по практикуму должен включать все зачеты по каждой лабораторной работе в отдельности.

Задания на каждую следующую лабораторную работу студенту выдавать по мере выполнения и сдачи предыдущих работ.

Автор(ы):

Ёхин Михаил Николаевич

Рецензент(ы):

Тышкевич В.Г.