Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МОДЕЛИРОВАНИЕ ИОННЫХ ПУЧКОВ

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	2	72	15	15	0		42	0	3
Итого	2	72	15	15	0	0	42	0	

АННОТАЦИЯ

Целями освоения учебной дисциплины являются получение базовых знаний по движению заряженных частиц в электрических и магнитных полях, изучение закономерностей движения заряженных частиц в электрических и магнитных полях и получение навыков расчета движения заряженных частиц в полях; освоение принципов теоретического моделирования ионно-оптических систем.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются получение базовых знаний по движению заряженных частиц в электрических и магнитных полях, изучение закономерностей движения заряженных частиц в электрических и магнитных полях и получение навыков расчета движения заряженных частиц в полях; освоение принципов теоретического моделирования ионно-оптических систем.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Принципы построения и изучения ионной-оптических систем в физических исследованиях являются важной частью научно исследовательской и нженерно–внедренческой работы магистра.

В качестве базовых знаний для усвоения дисциплины необходимы знания стан-дартного цикла курсов общей физики и высшей математики, умение пользоваться персо-нальным компьютером и некоторыми прикладным программным обеспечением.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
н	аучно-исследовательск	сий	
Проведение научных и аналитических исследований по отдельным разделам (этапам, заданиям)	Природные и социальные явления и процессы	ПК-1 [1] - Способен самостоятельно и (или) в составе исследовательской группы разрабатывать,	3-ПК-1[1] - Знать основные методы и принципы научных исследований, математического

темы (проекта) в		исследовать и	моделирования,
соответствии с		применять	основные проблемы
утвержденными		математические	профессиональной
планами и		модели для	области, требующие
методиками		качественного и	использования
исследований,		количественного	современных научных
построение		описания явлений и	методов исследования
физических,		процессов и (или)	для качественного и
математических и		разработки новых	количественного
компьютерных		технических средств	описания явлений и
моделей изучаемых		1	процессов и (или)
процессов и явлений в		Основание:	разработки новых
рамках предметной		Профессиональный	технических средств.;
области по профилю		стандарт: 40.011	У-ПК-1[1] - Уметь
специализации		Стандарт. 40.011	ставить и решать
специализации			прикладные
			исследовательские
			· · ·
			задачи, оценивать
			результаты
			исследований;
			проводить научные
			исследования и
			получать новые
			научные и
			прикладные
			результаты
			самостоятельно и в
			составе научного
			коллектива;
			В-ПК-1[1] - Владеть
			навыками выбора и
			использования
			математических
			моделей для научных
			исследований и (или)
			разработки новых
			технических средств
			самостоятельно и
			(или) в составе
			исследовательской
			группы.
Участие в проведении	Природные и	ПК-3 [1] - Способен	3-ПК-3[1] - Знать
наблюдений и	социальные явления	профессионально	основные методы
измерений,	и процессы	работать с	исследований,
выполнении	1 ,	исследовательским и	принципы работы
эксперимента и		испытательным	приборов и установок
обработке данных с		оборудованием,	в избранной
использованием		приборами и	предметной области;
современных		установками в	У-ПК-3[1] - Уметь
компьютерных		избранной предметной	выбирать
технологий		области в соответствии	необходимые
технологии			l l
		с целями программы	технические средства

	инновационный;	специализированной подготовки магистра <i>Основание:</i> Профессиональный стандарт: 40.011	для проведения экспериментальных исследований в избранной предметной области, обрабатывать полученные экспериментальные результаты; В-ПК-3[1] - Владеть навыками работы с исследовательским и испытательным оборудованием, приборами и установками в избранной предметной области
Проведение фундаментальных и прикладных математических и физических исследований, направленных на решение инженерных, технических и информационных задач	Природные и социальные явления и процессы	ПК-5 [1] - Способен применять физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий Основание: Профессиональный стандарт: 40.011	3-ПК-5[1] - Знать физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования, принципы экспертизы продукции для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий; У-ПК-5[1] - Уметь применять физические методы теоретического и экспериментального исследования, методы математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий; В-ПК-5[1] - Владеть навыками теоретического и экспериментального исследования,

математического анализа и моделирования для постановки задач по развитию, внедрению и коммерциализации новых наукоемких технологий Участие в проведении Модели, методы и ПК-5.3 [1] - Способен 3-ПК-5.3[1] - Знать наблюдений и средства применять аналитические и фундаментальных и измерений, аналитические и численные методы прикладных выполнении численные методы при решения научных и эксперимента и исследований и решении научных и производственных обработке данных с разработок в производственных задач в области области математики, задач в области использованием математического современных физики и других математического моделирования в компьютерных естественных и моделирования в физике кинетических технологий физике кинетических явлений; социально-У-ПК-5.3[1] - Уметь экономических наук явлений по профилям применять предметной Основание: аналитические и Профессиональный деятельности в численные методы науке, технике, стандарт: 24.075, при решении научных 24.078 и производственных технологиях, а задач в области также в сферах наукоемкого математического производства, моделирования в управления и физике кинетических бизнеса явлений; В-ПК-5.3[1] - Владеть аналитическими и численными методами решения научных и производственных залач в области математического моделирования в физике

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	2 Семестр						
1	Раздел 1	1-8	8/8/0		25	3д-8	3-ПК-

						1, y-
						У-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						3,
						у-
						ПК-3,
						B-
						ПК-3,
						3-ПК-
						5,
						У-
						ПК-5,
						B-
						ПК-5,
						3-ПК-
						5.3,
						у-
						ПК-
						5.3,
						B-
						ПК-
						5.3
2	Dagger 2	0.15	7/7/0	25	2- 15	
2	Раздел 2	9-15	7/7/0	25	Зд-15	3-ПК-
						1,
						у-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						3,
						У-
		I	l		1	TTT(2
						ПК-3,
1						В-
						В- ПК-3,
						В- ПК-3,
						В- ПК-3, 3-ПК-
						В- ПК-3, 3-ПК- 5,
						В- ПК-3, 3-ПК- 5, У-
						В- ПК-3, 3-ПК- 5, У- ПК-5,
						В- ПК-3, 3-ПК- 5, У- ПК-5, В-
						В- ПК-3, 3-ПК- 5, У- ПК-5, В- ПК-5,
						В- ПК-3, 3-ПК- 5, У- ПК-5, В- ПК-5, 3-ПК-
						В- ПК-3, 3-ПК- 5, У- ПК-5, В- ПК-5, 3-ПК- 5.3,
						В- ПК-3, 3-ПК-5, У- ПК-5, В- ПК-5, 3-ПК-5, 3-ПК-5,
						В- ПК-3, 3-ПК- 5, У- ПК-5, В- ПК-5, 3-ПК- 5.3, У- ПК-
						В- ПК-3, 3-ПК-5, У- ПК-5, В- ПК-5, 3-ПК-5, 3-ПК-5, 5.3, У- ПК-5,
						B- IIK-3, 3-IIK-5, y- IIK-5, B- IIK-5, 3-IIK-5, 5.3, y- IIK-5, 5.3,
						B- IIK-3, 3-IIK-5, y- IIK-5, B- IIK-5, 3-IIK-5, 5.3, y- IIK-5,3, B- IIK-5,3,
	Итого за 2 Семестр		15/15/0	50		B- IIK-3, 3-IIK-5, y- IIK-5, B- IIK-5, 3-IIK-5, 5.3, y- IIK-5, 5.3,

Контрол	льные			50	3	3-ПК-
меропрі		2				1,
Семестр)					У-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						3,
						У-
						ПК-3,
						B-
						ПК-3,
						3-ПК-
						5,
						У-
						ПК-5,
						B-
						ПК-5,
						3-ПК-
						5.3, y-
						ПК-
						5.3,
						B-
						ПК-
						5.3
						ر. ا

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
3д	Задание (задача)
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	2 Семестр	15	15	0
1-8	Раздел 1	8	8	0
1 - 2	Способы задания электрических и магнитных полей	Всего а	аудиторных	часов
	Электрические поля: плоского конденсатора,	2	2	0
	цилиндрического конденсатора, сферического	Онлайі	H	
	конденсатора, Магнитные поля простых геометрических	0	0	0
	форм. Расчет магнитного поля в зазоре магнита. Краевые			
	поля и их коррекция. Краевые поля электростатических			
	систем: плоского конденсатора, цилиндрического			

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	конденсатора. Линзовые эффекты сеточных электродов.			
	Краевое поле плоскопараллельного магнитного зазора.			
	Влияние краевых полей на фокусировку заряженных			
	частиц			
3 - 4	Ионно-оптические системы и их свойства		удиторных	
	Ионно-оптические системы и их свойства. Фокусировка и	2	2	0
	разделение ионов, аберрационные свойства ионно-	Онлайі		
	оптических систем. Электростатика и магнитостатика.	0	0	0
	Теоремы Остроградского-Гаусса и Остроградского-Стокса.			
	Теорема Гаусса. Принцип суперпозиции при расчетах			
7 (потенциалов.	D		
5 - 6	Движение заряженных частиц в полях		удиторных Го	
	Движение заряженных частиц в полях. Общие	2	2	0
	закономерности движения заряженных частиц в	Онлайі		T a
	электростатических и магнитных полях. Преломление траекторий.	0	0	0
7 - 8	Фокусирующие свойства электрических полей	Всего а	 удиторных	часов
	Фокусирующие свойства электрических полей. Основное	2	2	0
	уравнение электронной оптики для аксиально-	Онлайн	· ·	
	симметричных полей. Фокусировка в аксиально-	0	0	0
	симметричном поле. Тонкая линза. Практическое			
	использование фокусировки заряженных частиц.			
9-15	Раздел 2	7	7	0
9 - 10	Электростатические линзы	Всего а	удиторных	часов
	Электростатические линзы. Примеры электростатических	2	2	0
	линз. Аберрации электростатических линз. Движение	Онлайн	ł	
	заряженных частиц в однородном магнитном поле.	0	0	0
	Движение заряженных частиц в радиальном магнитном			
	поле			
11 - 12	Фокусировка в поперечных и продольных магнитных		удиторных	
	полях	2	2	0
	Фокусировка в поперечных и продольных магнитных	Онлайі		
	полях. Короткая магнитная линза. Дисперсия по массам в	0	0	0
	магнитных полях. Фокусировка в секторных полях.			
10 14	Аберрации, идеальная фокусировка			
13 - 14	Влияние объемного заряда электронных и ионных		удиторных 	1
	пучков	2	2	0
	Влияние объемного заряда электронных и ионных пучков.	Онлай		1.0
	Движение заряженных частиц с учетом влияния объемного	0	0	0
1.5	заряда. Формирование пучков заряженных частиц	D-		
15	Создание компьютерных моделей ионно-оптических	Всего а	удиторных □ 1	1
	Создания компинатории и модалой намиа антический	1	_	0
	Создание компьютерных моделей ионно-оптических	Онлай		0
	систем. Аксиально-симметричные электродные системы.	0	0	0
	Электродные системы с планарной геометрией.			
	Компьютерные модели сеточных систем с «идеальными» и			
	реальными сеточными электродами			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	

ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание		
	2 Семестр		
1 - 2	Тема 1		
	Способы задания электрических и магнитных полей		
3 - 4	Тема 2		
	Ионно-оптические системы и их свойства		
5 - 6	Тема 3		
	Движение заряженных частиц в полях		
7 - 8	Тема 4		
	Фокусирующие свойства электрических полей		
9 - 10	Тема 5		
	Электростатические линзы		
11 - 12	Тема 6		
	Фокусировка в поперечных и продольных магнитных		
	полях		
13 - 14	Тема 7		
	Влияние объемного заряда электронных и ионных пучков		
15 - 16	Тема 8		
	Создание компьютерных моделей ионно-оптических		
	систем		

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (компьютерные практикумы, разбор домашних заданий, система контрольно-измерительных материалов, включая тесты) а также, проведение занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ПК-1	3-ПК-1	3, 3д-8, 3д-15
	У-ПК-1	3, 3д-8, 3д-15
	В-ПК-1	3, 3д-8, 3д-15
ПК-3	3-ПК-3	3, 3д-8, 3д-15
	У-ПК-3	3, 3д-8, 3д-15
	В-ПК-3	3, 3д-8, 3д-15
ПК-5	3-ПК-5	3, 3д-8, 3д-15
	У-ПК-5	3, 3д-8, 3д-15
	В-ПК-5	3, 3д-8, 3д-15
ПК-5.3	3-ПК-5.3	3, 3д-8, 3д-15
	У-ПК-5.3	3, 3д-8, 3д-15
	В-ПК-5.3	3, 3д-8, 3д-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической
85-89		В	литературы. Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
70-74	4 – «xopouo»	D	материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает

омичаствании за омичбили Vor провино
существенные ошибки. Как правило,
оценка «неудовлетворительно»
ставится студентам, которые не могут
продолжить обучение без
дополнительных занятий по
соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Γ 69 Математическое моделирование. Построение моделей и численная реализация : , Санкт-Петербург: Лань, 2022
- 2. ЭИ С 79 Обработка данных и компьютерное моделирование : учебное пособие, Санкт-Петербург: Лань, 2020
- 3. ЭИ С56 Современные методы масс-спектрометрии : лабораторный практикум, А. С. Фролов [и др.], Москва: МИФИ, 2008
- 4. 533 Ж42 Процессы переноса в многокомпонентной плазме : Монография, В. М. Жданов, Москва: Физматлит, 2009
- 5. ЭИ О-75 Основы физических процессов в плазме и плазменных установках : учебное пособие для вузов, С. К. Жданов [и др.], Москва: МИФИ, 2007

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Для успешного обучения по данной дисциплине студент должен знать: основные понятия общей и статистической физики, а также знать основы математического, векторного и тензорного анализа. Курс разбит на 2 раздела.

Аттестация разделов представлена следующими формами контроля:

- Задание

На выбор преподавателя студенту выдается 2 вопроса из перечисленного ниже списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-проблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждой аттестации.

При подготовке к текущему контролю и зачету рекомендуется пользоваться следующей литературой:

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1 543 Моисеева Т.Г.;Сысоев А.А.;Фролов А.С.;Сысоева А.А.
- С56 Современные методы масс-спектрометрии : лабораторный практикум, А. С. Фролов [и др.], Москва: МИФИ, 2008
- 2 ЭИ Цветков И.В.;Прохорович Д.Е.;Фетисов И.К.;Ильгисонис В.И.;Курнаев В.А.; ;Сковорода А.А.;Кирко Д.Л.
- С23 Сборник задач по физической электронике и физике плазмы : учебное пособие для вузов, В. И. Ильгисонис [и др.], Москва: МИФИ, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1 621.38 В14 Вакуумная электроника Ч.1 МГТУ, 2008
- 2 537 Эгертон Р.Ф. Э17 Физические принципы электронной микроскопии. Введение в просвечивающую, растровую и аналитическую электронную микроскопию : , Москва: Техносфера, 2010

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Для успешного обучения по данной дисциплине студент должен знать: основные понятия общей и статистической физики, а также знать основы математического, векторного и тензорного анализа. Курс разбит на 2 раздела.

Аттестация разделов представлена следующими формами контроля:

- Задание

На выбор преподавателя студенту выдается 2 вопроса из перечисленного ниже списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-проблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Успешное прохождение студентом аттестации отвечает диапазону 15-25 баллов по итогам каждой аттестации.

При подготовке к текущему контролю и зачету рекомендуется пользоваться следующей литературой:

ОСНОВНАЯ ЛИТЕРАТУРА:

1 543 Моисеева Т.Г.;Сысоев А.А.;Фролов А.С.;Сысоева А.А.

С56 Современные методы масс-спектрометрии : лабораторный практикум, А. С. Фролов [и др.], Москва: МИФИ, 2008

2 ЭИ Цветков И.В.;Прохорович Д.Е.;Фетисов И.К.;Ильгисонис В.И.;Курнаев В.А.; ;Сковорода А.А.;Кирко Д.Л.

С23 Сборник задач по физической электронике и физике плазмы : учебное пособие для вузов, В. И. Ильгисонис [и др.], Москва: МИФИ, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1 621.38 В14 Вакуумная электроника Ч.1 МГТУ, 2008

2 537 Эгертон Р.Ф. Э17 Физические принципы электронной микроскопии. Введение в просвечивающую, растровую и аналитическую электронную микроскопию : , Москва: Техносфера, 2010

Автор(ы):

Сысоев Александр Алексеевич, д.ф.-м.н., профессор

Рецензент(ы):

Иванов В.П.