Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

СПЕКТРОСКОПИЯ НАНОСИСТЕМ (СПЕЦСЕМИНАР)

Направление подготовки (специальность)

[1] 11.04.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	4	144	8	40	0		60	0	Э
Итого	4	144	8	40	0	0	60	0	

АННОТАЦИЯ

Учебная задача курса «Спектроскопия наносистем (спецсеминар)» дать основные представления о физических закономерностях взаимодействия электромагнитного излучения с наноструктурами.

В курсе «Спектроскопия наносистем (спецсеминар)» уделяется особое внимание взаимосвязи симметрии нанообъекта с радиационными процессами. Изучаются основные физические принципы современной нанофотоники. Обсуждаются методы получения, исследования и применения нанофотонных систем

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины "Спектроскопия наносистем (спецсеминар)" является получение знаний, необходимых для успешной профессиональной деятельности в области исследований, разработок и технологий, направленных на понимание процессов, происходящих в области нанофотоники; при этом основное внимание уделяется линейному и нелинейному взаимодействию электромагнитного излучения (в основном и оптическом диапазоне) с нанообъектами

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Б1.ДВ.2.6.2 Дисциплина по выбору

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-ис	следовательский	
разработка рабочих	материалы,	ПК-5 [1] - способен	3-ПК-5[1] - Знать:
планов и программ	компоненты,	делать научно-	современные
проведения научных	электронные	обоснованные выводы	теоретические и
исследований и	приборы,	по результатам	экспериментальные
технических	устройства,	теоретических и	достижения в области
разработок,	установки, методы	экспериментальных	электроники и
подготовка отдельных	их исследования,	исследований, давать	наноэлектроники;

заданий для исполнителей; сбор, обработка, анализ и систематизация научно-технической информации по теме исследования, выбор методик и средств решения задачи; разработка методики, проведение исследований и измерений параметров и характеристик изделий электронной техники, анализ их результатов; использование физических эффектов при разработке новых методов исследований и изготовлении макетов измерительных систем; разработка физических и математических моделей, компьютерное моделирование исследуемых физических процессов, приборов, схем и устройств, относящихся к профессиональной сфере; подготовка научно-технических отчетов, обзоров, рефератов, публикаций по результатам выполненных исследований, подготовка и представление докладов на научные конференции и семинары; фиксация и защита объектов интеллектуальной собственности

математические модели

рекомендации по совершенствованию устройств и систем, готовить научные публикации и заявки на изобретения

Основание: Профессиональный стандарт: 40.011 У-ПК-5[1] - Уметь: делать научно-обоснованные выводы по результатам теоретических и экспериментальных исследований, давать рекомендации по совершенствованию устройств и систем.; В-ПК-5[1] - Владеть: навыками подготовки научных публикаций и заявок на изобретения

разработка рабочих планов и программ проведения научных исследований и технических разработок, подготовка отдельных заданий для исполнителей; сбор, обработка, анализ и систематизация научно-технической информации по теме исследования, выбор методик и средств решения задачи; разработка методики, проведение исследований и измерений параметров и характеристик изделий электронной техники, анализ их результатов; использование физических эффектов при разработке новых методов исследований и изготовлении макетов измерительных систем; разработка физических и математических моделей. компьютерное моделирование исследуемых физических процессов, приборов, схем и устройств, относяшихся к профессиональной сфере; подготовка научно-технических отчетов, обзоров, рефератов, публикаций по результатам выполненных исследований, подготовка и

материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, математические модели ПК-7 [1] - способен анализировать состояние научнотехнической проблемы путем подбора, изучения и анализа литературных и патентных источников

Основание: Профессиональный стандарт: 40.011 3-ПК-7[1] - Знать: современное состояние научнотехнических проблем в области электроники и наноэлектроники; У-ПК-7[1] - Уметь: анализировать состояние научнотехнической проблемы путём изучения и анализа литературных и патентных источников.; В-ПК-7[1] - Владеть: навыками сбора научно-технической информации, необходимой для проведения исследований.

представление		
докладов на научные		
конференции и		
семинары; фиксация и		
защита объектов		
интеллектуальной		
собственности		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	1 Семестр						
1	Понятие спектроскопии и ее экспериментальных методов	1-8	4/20/0		25	КИ-8	3-ПК-5, У-ПК-5, В-ПК-5
2	Многоэлектронные атомы. Тонкая структура термов. Возбужденные атомы	9-16	4/20/0		25	КИ-16	3-ПК-7, У-ПК-7, В-ПК-7
	Итого за 1 Семестр		8/40/0		50		
	Контрольные мероприятия за 1 Семестр				50	Э	3-ПК-5, У-ПК-5, В-ПК-5, 3-ПК-7, У-ПК-7, В-ПК-7

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	1 Семестр	8	40	0	
1-8	Понятие спектроскопии и ее экспериментальных	4	20	0	
	методов Тема 1	Всего	аулитори	ных часов	
	Роль спектроскопии и ее экспериментальных методов в	1	<u>аудиторг</u> 5	0	
	современной физике твердого тела, физике наноструктур и	Онлай		10	
	нанофотонике.	0	0	0	
	Тема 2			ных часов	
	Спонтанные и индуцированные переходы. Вероятности	1	<u> </u>	0	
	переходов, сечения поглощения и вынужденного	Онлай	U		
	испускания. Правила отбора. Экспериментальные методы	0	0	0	
	изучения атомарных спектров.				
	Тема 3	Всего	Всего аудиторных часов		
	Уравнение Шредингера для атома водорода.	1	5	0	
	Распределение электронной плотности для состояний	Онлай	İH	•	
	атома водорода. Тонкая структура спектров атома	0	0	0	
	водорода. Спин-орбитальное взаимодействие.				
	Сверхтонкое расщепление. Лэмбовский сдвиг.				
	Тема 4	Всего	аудиторі	ных часов	
	Искусственные атомы, квантовые точки. Энергетические	1	5	0	
	уровни типичных квантовых точек. Спектры	Онлай	1		
	поглощения и люминесценции. Систематика спектров	0	0	0	
	полупроводниковых квантовых точек. Применение				
	квантовых точек в медицинской спектральной				
0.16	диагностике.	4	20	0	
9-16	Многоэлектронные атомы. Тонкая структура термов.	4	20	0	
	Возбужденные атомы Тема 5	Распо	OMHUTOSI OMHUTOSI	H IV HOOD	
	Спектры многоэлектронных атомов. Приближение	1	<u>аудиторн</u> 5	и часов	
	центрального поля. Систематика состояний электронов в	Онлайн			
	центральном поле. Оболочечная модель атома и границы	Онлаи	0	0	
	ее применимости. Электростатическое расщепление.		0	0	
	Понятие спектрального терма. Тонкая структура терма.				
	Приближение LS- и jj –связи.				
	Тема 6	Всего аудиторных часов			
	Спектры атомов с оболочкой ns и ns2. Спектры щелочных	1	5	0	
	и щелочноземельных элементов. Атом гелия. Сериальные	Онлай	İH		
	закономерности. Тонкая структура. Интенсивности	0	0	0	
	спектральных линий. Спектры атомов меди, серебра,				
	золота и ртути. Лазер на парах меди и золота.				
	Тема 7	Всего	аудиторн	ных часов	
	Спектры атомов с заполняющимися и заполненными р-,	1	5	0	
	d- и f-оболочками. Термы основных и возбужденных	Онлай	ін		
	электронных конфигураций. Тонкая структура термов,	0	0	0	
	интенсивности спектральных линий.				
	Тема 8	Всего		ных часов	
	Возбужденные атомы. Метастабильные атомы в газовых	1	5	0	
	лазерах. Многоступенчатое селективное фотовозбуждение	Онлай			
	и фотоионизация атомов. Применение многоступенчатой	0	0	0	
	селективной фотоионизация для разделения изотопов и в				
	элементном анализе.				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Используются современные предметно- и личностно-ориентированные образовательные технологии, компьютерные технологии.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ПК-5	3-ПК-5	Э, КИ-8
	У-ПК-5	Э, КИ-8
	В-ПК-5	Э, КИ-8
ПК-7	3-ПК-7	Э, КИ-16
	У-ПК-7	Э, КИ-16
	В-ПК-7	Э, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе,

	1		
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
	4 <i>– «хорошо»</i>		по существу излагает его, не допуская
70-74		Б	существенных неточностей в ответе на
		D	вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»		выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
60-64		Е	недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
			Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60	2 — «неудовлетворительно»	F	ошибки. Как правило, оценка
		_	«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.
	1	I	1

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При составлении программы учебной дисциплины "Спектроскопия наносистем (спецсеминар)" предполагалось, что студент изучил основные разделы курсов «Квантовая механика», «Оптика», «Электродинамика», «Физика твердого тела», а также знает и умеет пользоваться следующими понятиями, методами, законами и уравнениями квантовой механики: энергетические уровни, длина волны Де Бройля, физики конденсированного состояния вещества (кристаллические структуры, фононы, дефекты, плотность состояний), теории металлов: зонная структура, квазичастицы (электроны и дырки проводимости, экситоны, поверхностные состояния).

В результате освоения данной дисциплины студент должен знать основные экспериментальные факты и базовые теоретические модели, используемые в оптике и физике конденсированного состояния вещества, их основные применения в промышленности и физическом эксперименте.

Типичные задачи для семинарских занятий с методическими указаниями для их решения представлены в следующих учебниках и учебных пособиях:

- 1. Федоров А.В. Физика и технология гетероструктур, оптика квантовых наноструктур. Учебное пособие. СПб: СПбГУ ИТМО, 2009.
 - 2. Сойфер В.А. Дифракционная нанофотоника. М.: Физматлит, 2011.
 - 3. Игнатов А.Н. Оптоэлектроника и нанофотоника. Учебное пособие. М.: Лань, 2011.
 - 4. Климов В.В. Наноплазмоника, М, ФИЗМАТЛИТ, 2010 г.
- 5. Головань Л.А., Тимошенко В.Ю., Кашкаров П.К. Оптические свойства нанокомпозитов на основе пористых систем. УФН, 2007, Т. 177, № 6.

Данными книгами рекомендуется пользоваться при самостоятельной проработке заданных разделов курса.

Как хороший источник информации по современным достижениям в нанофотонике рекомендуется бюллетень «ПЕРСТ» (Перспективные технологии, http://perst.isssph.kiae.ru). Хорошие обзоры можно найти в журнале «Успехи физических наук» (http://ufn.ru). Учитывая возможность неполноты и недостоверности, для расширения научного кругозора можно использовать статьи из Википедии (www.wikipedia.ru), и ресурс www.membrana.ru.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо учитывать, что основные понятия студенту известны из курсов общей и теоретической физики. Поэтому следует обратить внимание на рассмотрение вопросов спинорбитального взаимодействия, а также зависимости энергии атома от массы электрона. Важно продемонстрировать применение квантово-механической теории возмущений для расчета соответствующих поправок к энергии атома. При рассмотрении сдвига Лэмба обычно не хватает времени для изложении как теории, так и эксперимента. Преподаватель должен выбрать: можно продемонстрировать квантово-механический расчет сдвига, а можно сосредоточиться на эксперименте. В первом случае необходимо объяснить, хотя бы качественно, общие принципы квантования электромагнитного поля. Студенты выносят из курса общей физики несколько искаженное представление о терме. Следует подробно объяснить зависимость электростатического расщепления от суммарного спина и суммарного

орбитального момента. Первое можно сделать на примере двухэлектронного атома (атома гелия).

Важно дать понятия о коэффициентах Эйнштейна и об их взаимосвязи, а также дать квантово-механический вывод вероятности радиационного перехода и объяснить студентам, что такое матричный элемент оператора дипольного момента и его связь с вероятностью радиационного перехода. Ключевой вопрос этого раздела — правила отбора. Чтобы избежать формального усвоения правил отбора, необходимо объяснить их физическую природу, обусловленную элементарным процессом взаимодействия фотона с атомом. Можно дать понятие о насыщении перехода.

Для объяснения типичных спектров атомов различных периодов периодической таблицы, следует активно использовать: понятие спектрального терма, правила отбора, оболочечную модель, теорию тонкого расщепления и т.п. Удобно продемонстрировать некоторые основные принципы спектроскопии многоэлектронного атома на примере работы некоторых атомных и ионных лазеров - таких как лазер на парах меди и золота, иодный лазер, гелий-неоновый лазер.

При рассмотрении многоступенчатого возбуждения атомов необходимо использовать понятие насыщения перехода. При этом студенты должны уметь самостоятельно сделать оценки для интенсивности лазерного излучения, требуемой для эффективной многоступенчатой ионизации. В этом разделе необходимо дать понятие о технологии лазерного разделения изотопов, а также аналитических методах детектирования атомарных примесей в конденсированных средах.

Самостоятельная работа студентов включает решение задач, предложенных преподавателем на лекциях.

Автор(ы):

Мартынов Игорь Леонидович, к.ф.-м.н.