Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

СОЛНЕЧНО-ЗЕМНАЯ НЕЙТРИННАЯ ФИЗИКА

Направление подготовки (специальность)

- [1] 14.04.01 Ядерная энергетика и теплофизика
- [2] 14.04.02 Ядерные физика и технологии
- [3] 22.04.01 Материаловедение и технологии

материалов

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1, 1	2	72	0	32	0		40	0	3
Итого	2	72	0	32	0	0	40	0	

АННОТАЦИЯ

Курс лекций «Солнечно-земная нейтринная физика» предназначен для углубленного изучения нейтринной физики. Для лучшего освоения данного курса рекомендуется прослушать курс «Ядерная физика» с разделом «Основы физики нейтрино».

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В курсе подробно рассматриваются источники нейтрино и антинейтрино, создающие значимые потоки на поверхности Земли. По каждому источнику приводятся его характеристики, такие, как энергетический спектр, расположение относительно поверхности Земли. Основная задача курса - углубление изучения нейтринной физики, в том числе - в понимании раздела, связанного с источниками потоков нейтрино в окрестности Земли.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина входит в блок элективных (по выбору) дисциплин на 1 курсе образовательной программы

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
УК-1 [1] – Способен осуществлять	3-УК-1 [1] – Знать: методы системного и критического
критический анализ проблемных	анализа; методики разработки стратегии действий для
ситуаций на основе системного	выявления и решения проблемной ситуации
подхода, вырабатывать стратегию	У-УК-1 [1] – Уметь: применять методы системного
действий	подхода и критического анализа проблемных ситуаций;
	разрабатывать стратегию действий, принимать
	конкретные решения для ее реализации
	В-УК-1 [1] – Владеть: методологией системного и
	критического анализа проблемных ситуаций; методиками
	постановки цели, определения способов ее достижения,
	разработки стратегий действий
УК-3 [2] – Способен	3-УК-3 [2] – Знать: методики формирования команд;
организовывать и руководить	методы эффективного руководства коллективами;
работой команды, вырабатывая	основные теории лидерства и стили руководства
командную стратегию для	У-УК-3 [2] – Уметь: разрабатывать план групповых и
достижения поставленной цели	организационных коммуникаций при подготовке и
	выполнении проекта; сформулировать задачи членам
	команды для достижения поставленной цели;
	разрабатывать командную стратегию; применять
	эффективные стили руководства командой для
	достижения поставленной цели

	В-УК-3 [2] — Владеть: умением анализировать, проектировать и организовывать межличностные, групповые и организационные коммуникации в команде для достижения поставленной цели; методами организации и управления коллективом
УК-4 [2] — Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия	3-УК-4 [2] — Знать: правила и закономерности личной и деловой устной и письменной коммуникации; современные коммуникативные технологии на русском и иностранном языках; существующие профессиональные сообщества для профессионального взаимодействия У-УК-4 [2] — Уметь: применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия В-УК-4 [2] — Владеть: методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средств и современных коммуникативных технологий
УКЦ-2 [2] — Способен к самообучению, самоактуализации и саморазвитию с использованием различных цифровых технологий в условиях их непрерывного совершенствования	3-УКЦ-2 [2] — Знать основные цифровые платформы, технологи и интернет ресурсы используемые при онлайн обучении У-УКЦ-2 [2] — Уметь использовать различные цифровые технологии для организации обучения В-УКЦ-2 [2] — Владеть навыками самообучения, самооактулизации и саморазвития с использованием различных цифровых технологий

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследо	овательский	
проведении	методы и средства	ПК-2 [3] - Способен	3-ПК-2[3] - Знать
исследований и	испытаний и	понимать физические	основные
разработок новых	диагностики,	и химические	физические и
материалов и	исследования и	процессы,	химические
композиций, научных и	контроля качества	протекающие в	процессы,
прикладных	материалов, пленок и	материалах при их	протекающие в
экспериментов по	покрытий,	получении, обработке	материалах при их
созданию новых	полуфабрикатов,	и модифицировании,	получении,
процессов получения и	заготовок, деталей и	использовать в	обработке и
обработки материалов,	изделий, все виды	исследованиях и	модифицировании,
а также изделий	исследовательского,	расчетах знания о	·,
	контрольного и	методах	У-ПК-2[3] - Уметь

испытательного исследования, использовать в оборудования, анализа, диагностики исследованиях и аналитической и моделирования расчетах знания о аппаратуры, свойств материалов, методах компьютерное проводить исследования, программное комплексные анализа, обеспечение для исследования, диагностики и обработки моделирования применяя результатов и анализа стандартные и свойств полученных данных, сертификационные материалов;; моделирования испытания В-ПК-2[3] - Владеть поведения навыками Основание: материалов, оценки и проведения прогнозирования их Профессиональный комплексных стандарт: 40.011 эксплуатационных исследований, характеристик применяя стандартные и сертификационные испытания. 1 Разработка методов ПК-4 [2] - Способен 3-ПК-4[2] - Знать: 1 Современный регистрации ядерно-физический самостоятельно цели и задачи эксперимент, ионизирующих и выполнять проводимых электромагнитных современные экспериментальные и исследований; излучений; создание электронные системы теоретические основные методы и теоретических моделей сбора и обработки исследования для средства проведения состояния вещества, данных для ядерных и решения научных и экспериментальных взаимодействия физических установок производственных и теоретических математические лазерного и залач исследований; ионизирующего методы и средства модели для излучения с веществом; теоретического и Основание: математической Профессиональный обработки созлание экспериментального стандарт: 24.028, результатов математических исследований 40.008, 40.011 моделей, описывающих фундаментальных экспериментальных процессы в ядерных взаимодействий данных; У-ПК-4[2] - Уметь: реакторах, ускорителях, элементарных частиц коллайдерах, масси атомных ядер и их применять методы спектрометрах; излучений проведения создание методов экспериментов; расчета разделения использовать изотопных и математические методы обработки молекулярных смесей; создание современных результатов исследований и их электронных устройств сбора и обработки обобщения; информации, учета оформлять воздействия на эти результаты научноустройства исследовательских ионизирующего и работ; электромагнитного В-ПК-4[2] - Владеть: излучений; разработка навыками методов повышения самостоятельного безопасности ядерных и выполнения

лазерных установок, экспериментальных материалов и и теоретических технологий; разработка исследования для теоретических моделей решения научных и прохождения излучения производственных через вещество, задач воздействия ионизирующего, лазерного и электромагнитного излучений на человека и объекты окружающей среды ПК-7 [1] - способен 3-ПК-7[1] - знать исследования, атомное ядро, разработки и использовать и новые методы элементарные технологии, совершенствования частицы и плазма, оценивать направленные на конденсированное современные действующих регистрацию и состояние вещества, достижения науки и технологических обработку информации, техники для решения процессов; ; лазеры и их разработку теории, применения, ядерные профессиональных У-ПК-7[1] - уметь создание и применение реакторы, материалы задач в научноанализировать установок и систем в ядерных реакторов, информационные исследовательской области физики ядра, ядерные материалы и деятельности документы с системы обеспечения частиц, плазмы, результатами их безопасности, научных конденсированного Основание: состояния вещества, ускорители Профессиональный исследований;; стандарт: 24.028 В-ПК-7[1] - владеть заряженных частиц, физики разделения изотопных и современная современными молекулярных смесей, электронная пакетами физики схемотехника, прикладных быстропротекающих электронные системы компьютерных процессов, программ ядерных и радиационной физических медицинской физики, установок, системы автоматизированного радиационного материаловедения, управления ядерноисследования физическими установками, неравновесных разработка и физических процессов, распространения и технологии взаимодействия применения приборов излучения с объектами и установок для живой и неживой анализа веществ, природы, ядернорадиационное физических установок, воздействие обеспечения ядерной и ионизирующих радиационной излучений на безопасности, человека и безопасности ядерных окружающую среду, материалов и радиационные физической защиты технологии в ядерных объектов, медицине,

систем контроля и автоматизированного управления ядернофизическими установками.

математические модели для теоретического и экспериментального исследований явлений и закономерностей в области физики ядра, частиц, плазмы, конденсированного состояния вещества, ядерных реакторов, распространения и взаимодействия излучения с объектами живой и неживой природы, экологический мониторинг окружающей среды, обеспечение безопасности ядерных материалов, объектов и установок атомной промышленности и энергетики.

проектный

4 Формирование целей проекта (программы) решения задач, критериев и показателей достижения целей, построение структуры их взаимосвязей, выявление приоритетов решения задач с учетом всех аспектов деятельности; разработка обобщенных вариантов решения проблемы, анализ этих вариантов, прогнозирование последствий, нахождение компромиссных решений в условиях многокритериальности, неопределенности, планирование реализации проекта;

4 Математические модели для теоретических, экспериментальных и прикладных проектов по исследованию явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, включая экологический мониторинг окружающей среды, обеспечение безопасности гражданских объектов ПК-5 [2] - Способен проводить расчет и проектирование физических установок и приборов с использованием современных информационных технологий

Основание: Профессиональный стандарт: 24.028, 24.078, 40.008, 40.011

3-ПК-5[2] - Знать основные физические законы и стандартные прикладные пакеты используемые при моделировании физических процессов и установок; У-ПК-5[2] - Уметь применять стандартные прикладные пакеты используемые при моделировании физических процессов и установок; В-ПК-5[2] - Владеть стандартными прикладными пакетами используемыми при моделировании

использование			физических
информационных			процессов и
технологий при			установок
разработке новых			
установок, материалов			
и изделий; разработка			
проектов технических			
условий, стандартов и			
технических описаний			
новых установок,			
материалов и изделий			
4 Формирование целей	4 Математические	ПК-6 [2] - Способен	3-ПК-6[2] - Знать
проекта (программы)	модели для	оценивать риск и	основные
решения задач,	теоретических,	определять меры	нормативные
критериев и	экспериментальных и	безопасности для	документы по
показателей	прикладных проектов	новых установок и	регулированию
достижения целей,	по исследованию	технологий,	рисков
построение структуры	явлений и	составлять и	возникающих в
их взаимосвязей,	закономерностей в	анализировать	процессе
выявление приоритетов	области физики ядра,	сценарии	эксплуатации новых
решения задач с учетом	частиц, плазмы,	потенциально	установок и
всех аспектов	газообразного и	возможных аварий,	технологий,
деятельности;	конденсированного	разрабатывать	составлять и
разработка обобщенных	состояния вещества,	методы уменьшения	анализировать
вариантов решения	распространения и	риска их	сценарии
проблемы, анализ этих	взаимодействия	возникновения	потенциально
вариантов,	излучения с		возможных аварий,
прогнозирование	объектами живой и	Основание:	разрабатывать
последствий,	неживой природы,	Профессиональный	методы уменьшения
нахождение	включая	стандарт: 24.028,	риска их
компромиссных	экологический	24.078, 40.008, 40.011	возникновения;
решений в условиях	мониторинг		У-ПК-6[2] - Уметь
многокритериальности,	окружающей среды,		оценивать риск и
неопределенности,	обеспечение		определять меры
планирование	безопасности		безопасности для
реализации проекта;	гражданских объектов		новых установок и
использование			технологий,
информационных			составлять и
технологий при			анализировать
разработке новых			сценарии
установок, материалов			потенциально
и изделий; разработка			возможных аварий,
проектов технических			разрабатывать
условий, стандартов и			методы уменьшения
технических описаний			риска их
новых установок,			возникновения;
материалов и изделий			В-ПК-6[2] - Владеть
			методами оценки
			рисков и определять
			меры безопасности
			для новых установок
			и технологий,

составлять и анализировать сценарии потенциально возможных аварий, разрабатывать методы уменьшения риска их возникновения производственно-технологический 5 Современный 3-ПК-9[2] - Знать 5 Разработка способов ПК-9 [2] - Способен проведения ядерноядерно-физический эксплуатировать, регламент физических эксперимент, проводить испытания эксплуатации и экспериментов и современные и ремонт ремонта экспериментов в детекторные системы современных современных смежных областях и электронные физических физических системы сбора и науки и техники, установок, выполнять установок; способов применения обработки данных для У-ПК-9[2] - Уметь техникоядерно-физических ядерно- физических эксплуатировать, экономические методик в решении установок, расчеты проводить математические технологических испытания и ремонт Основание: проблем; использование модели для современных результатов теоретического и Профессиональный физических стандарт: 24.028, проводимых экспериментального установок; исследований и 40.011 исследований В-ПК-9[2] - Владеть разработок в фундаментальных навыками технологических и взаимодействий эксплуатации, элементарных частиц проведения производственных и атомных ядер испытаний и целях; реализация цепочки: исследование, ремонта развитие, технология, современных физических производство установок экспертный ПК-11 [2] - Способен 7 Анализ технических и 7 Научные 3-ПК-11[2] - Знать исследования, расчетно-теоретических к анализу законодательные и разработок, учет их разработки и технических и нормативные акты соответствия технологии, регулирующие расчетнотребованиям законов в деятельность в направленные на теоретических наукоемком регистрацию данных, разработок, к учету области сбор и обработку их соответствия производстве, экологии промышленности, научной информации; требованиям законов и безопасности и экологии, другим нормативным создание и в области технической, промышленности, актам; оценка применение радиационной и соответствия экспериментальных экологии, ядерной предлагаемого решения методов, установок и технической, безопасности; систем в области достигнутому мировому радиационной и У-ПК-11[2] - Уметь физики ядра, частиц, ядерной безопасности уровню; проводить анализ рецензирование космических лучей и и другим технических и проектов, заявок, астрофизики нормативным актам расчетнотехнических заданий, теоретических

Основание:

разработок с учетом

рефератов и отчетов

Профессиональный их соответствия стандарт: 24.028, требованиям 40.011 законов в области промышленности, экологии, технической, радиационной и ядерной безопасности и другим нормативным актам; В-ПК-11[2] владеть методами анализа технических и расчетнотеоретических разработок, и учета их соответствия требованиям законов в области промышленности, экологии, технической. радиационной и ядерной безопасности и другим нормативным актам совокупность средств, ядерные реакторы и ПК-12 [2] - Способен 3-ПК-12[2] - Знать объективно оценить способов и методов энергетические основные критерии установки, человеческой предлагаемое оценки теплогидравлические решение или проект деятельности, предлагаемого связанных с и нейтроннопо отношению к решения или разработкой, созданием физические процессы современному проекта по и эксплуатацией в активных зонах мировому уровню, отношению к установок, ядерных реакторов, подготовить современному вырабатывающих, тепловые измерения и экспертное мировому уровню; преобразующих и заключение У-ПК-12[2] - Уметь контроль, использующих ядерную теплоносители, оценивать энергию Основание: материалы ядерных предлагаемые реакторов, ядерный Профессиональный решения на стандарт: 24.028, топливный цикл, соответствие системы обеспечения 40.011 современному безопасности ядерных мировому уровню, энергетических подготовить установок, системы экспертное управления ядернозаключение; физическими В-ПК-12[2] установками, Владеть навыками программные подготовки комплексы и экспертных заключений по математические

модели для	предлагаемым
теоретического и	проектам
экспериментального	
исследования явлений	
и закономерностей в	
области теплофизики	
и энергетики,	
перспективные	
методы	
преобразования	
энергии.	

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

N.C.	Harrisananar			•			
No	Наименование			й а*		~~	
п.п	раздела учебной		e G	ииј	ій 1**	រង់	
	дисциплины		Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	ы
			Лекции/ Пра (семинары). Лабораторні работы, час.	гек ь ((a.II.	Аттестация раздела (фо неделя)	Индикаторы освоения компетенции
		Z	іи/ пар ато	г. т оло п)	IM:	[a1]	Индикат освоения компетен
		ел	HIN HOLD	3a' rp :s	кси		ик Эен пе
		Недели	lek em la6	Обязат. контро: неделя)	Tar a.r.	Аттеста раздела неделя)	[H] CBC
		H	5 5 d	О К	<u> </u>	A p h	Д 0 К
	1 Семестр						
1	Первый раздел	1-8	0/16/0		25	КИ-8	3-ПК-2,
							У-ПК-2,
							В-ПК-2,
							3-ПК-4,
							У-ПК-4,
							В-ПК-4,
							3-ПК-5,
							У-ПК-5,
							В-ПК-5,
							3-ПК-6,
							У-ПК-6,
							В-ПК-6,
							3-ПК-7,
							У-ПК-7,
							В-ПК-7,
							3-УК-1,
							У-УК-1,
							В-УК-1,
							3-УК-3,
							У-УК-3,
							В-УК-3,
							3-УК-4,
							У-УК-4,
							В-УК-4,
							3-УКЦ-2,
							У-УКЦ-2,
							В-УКЦ-2
2	Второй раздел	9-16	0/16/0		25	КИ-16	3-ПК-9,

				У-ПК-9,
				В-ПК-9,
				3-ПК-11,
				У-ПК-11,
				В-ПК-11,
				3-ПК-12,
				У-ПК-12,
				В-ПК-12
Итого за 1 Семестр	0/32/0	50		
Контрольные		50	3	3-ПК-2,
мероприятия за 1				У-ПК-2,
Семестр				В-ПК-2,
-				3-ПК-4,
				У-ПК-4,
				В-ПК-4,
				3-ПК-5,
				У-ПК-5,
				В-ПК-5,
				3-ПК-6,
				У-ПК-6,
				В-ПК-6,
				3-ПК-7,
				У-ПК-7,
				В-ПК-7,
				3-ПК-9,
				У-ПК-9,
				В-ПК-9,
				3-ПК-11,
				У-ПК-11,
				В-ПК-11,
				3-ПК-12,
				У-ПК-12,
				В-ПК-12,
				3-УК-1,
				У-УК-1,
				В-УК-1,
				3-УК-3,
				У-УК-3,
				В-УК-3,
				3-УК-4,
				У-УК-4,
				В-УК-4,
				3-УКЦ-2,
				У-УКЦ-2,
				В-УКЦ-2

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
-------------	---------------------

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	1 Семестр	0	32	0	
1-8	Первый раздел	0	16	0	
1 - 2	Лекция 1. Введение в нейтринную физику.	Всего а	удиторных	часов	
	Источники нейтрино в природе. Солнце, ядерные	0	2	0	
	реакторы, ядерные взрывы, атмосфера, искусственные	Онлайн	I		
	источники (ускорители и изотопы), недра Земли, вспышки	0	0	0	
	сверхновых, ядра галактик.				
1 - 2	Лекция 1. Введение в нейтринную физику.	Всего а	удиторных	часов	
	Источники нейтрино в природе. Солнце, ядерные	0	2	0	
	реакторы, ядерные взрывы, атмосфера, искусственные	Онлайі	I		
	источники (ускорители и изотопы), недра Земли, вспышки	0	0	0	
	сверхновых, ядра галактик.				
2 - 3	Лекция 2. Ядерные реакторы и нейтрино.	Всего а	удиторных	часов	
	Управляемая цепная реакция деления. Осколки деления.	0	2	0	
	Накопление долгоживущих осколков в ходе кампании	Онлайн	I		
	ядерного реактора. Энергетический спектр частиц при	0	0	0	
	бета-распаде. Симметрия бета и антинейтринного спектра.				
	Энергетический спектр ядерного реактора.				
2 - 3	Лекция 2. Ядерные реакторы и нейтрино.	Всего аудиторных часов			
	Управляемая цепная реакция деления. Осколки деления.	0	2	0	
	Накопление долгоживущих осколков в ходе кампании	Онлайн	I		
	ядерного реактора. Энергетический спектр частиц при	0	0	0	
	бета-распаде. Симметрия бета и антинейтринного спектра.				
	Энергетический спектр ядерного реактора.				
3 - 4	Ядерные реакторы и нейтрино.	Всего а	удиторных	часов	
	Эксперименты с антинейтрино от ядерного реактора: SRP,	0	2	0	
	Goesgen, Bugey, Rovno, Krasnoyarsk. Реакция обратного	Онлайн	I		
	бета-распада (ОБР). Реакция захвата нейтрино (ОБР) на	0	0	0	
	ядрах. Реакция рассеяния на электроне. Реакция				
	когерентного рассеяния на ядрах.				
3 - 4	Ядерные реакторы и нейтрино.	Всего а	удиторных	часов	
	Эксперименты с антинейтрино от ядерного реактора: SRP,	0	2	0	
	Goesgen, Bugey, Rovno, Krasnoyarsk. Реакция обратного	Онлайн	I		
	бета-распада (ОБР). Реакция захвата нейтрино (ОБР) на	0	0	0	
	ядрах. Реакция рассеяния на электроне. Реакция				
	когерентного рассеяния на ядрах.				
4 - 5	Ядерные реакторы и нейтрино.	Всего а	удиторных	часов	
	Современные эксперименты с реакторными нейтрино:	0	2	0	
	подтверждение осцилляций нейтрино первого поколения	Онлайн	I		
	нейтрино во второе KamLAND, обнаружений осцилляций	0	0	0	
	первого поколения в третье в экспериментах Daya Bay,				
	RENO и Double Chooz. Будущий эксперимент по поиску				
	иерархии масс нейтрино JUNO. Спектр от ядерного				

	взрыва.				
4 - 5	Ядерные реакторы и нейтрино.	Всего	аудиторн	ых часов	
	Современные эксперименты с реакторными нейтрино:	0	2	0	
	подтверждение осцилляций нейтрино первого поколения	Онлайн			
	нейтрино во второе KamLAND, обнаружений осцилляций	0	0	0	
	первого поколения в третье в экспериментах Daya Bay,				
	RENO и Double Chooz. Будущий эксперимент по поиску				
	иерархии масс нейтрино JUNO. Спектр от ядерного				
	взрыва.				
5 - 6	Ядерные реакторы и нейтрино.	Всего	аудиторн	ых часов	
	Эксперименты по поиску стерильных нейтрино:	0	2	0	
	Нейтрино-4,	Онлай	H	•	
		0	0	0	
5 - 6	Ядерные реакторы и нейтрино.	Всего	аудиторн	ых часов	
	Эксперименты по поиску стерильных нейтрино:	0	2	0	
	Нейтрино-4,	Онлай	т <u> </u>		
	110111111111111111111111111111111111111	0	0	0	
6 - 7	Ядерные реакторы и нейтрино.	Ŭ		ых часов	
0 ,	Другие эксперименты с реакторными нейтрино: поиск	0	$\frac{aygnropn}{2}$	0	
	магнитного момента GEMMA, когерентное рассеяние	Онлай	<u> </u>		
	нейтрино на ядрах РЭД-100. Изучение возможностей	Онлаи	0	0	
	использования антинейтрино для мониторирования	U	U	U	
	активной зоны ядерного реактора.				
6 - 7	Ядерные реакторы и нейтрино.	Regro	<u> </u>	ых часов	
0 - 7	Другие эксперименты с реакторными нейтрино: поиск	0	аудиторн 2	0	
	магнитного момента GEMMA, когерентное рассеяние	Онлай		U	
	нейтрино на ядрах РЭД-100. Изучение возможностей			0	
	использования антинейтрино для мониторирования	0	0	0	
	активной зоны ядерного реактора.				
7 - 8	Солнце и нейтрино.	Всего	омпитори	ых часов	
7 - 0	Источники солнечной энергии и нейтрино – термоядерные	0	аудиторн 2	0	
	реакции синтеза. pp-cycle, CNO cycle. He, C, Ne, O, Si.	Онлай		U	
	реакции синтеза. pp-cycle, etvo cycle. He, e, tve, o, si.				
7 0		0	0	0	
7 - 8	Солнце и нейтрино.		аудиторн	ых часов	
	Источники солнечной энергии и нейтрино – термоядерные	0	2	0	
	реакции синтеза. pp-cycle, CNO cycle. He, C, Ne, O, Si.	Онлай			
		0	0	0	
8 - 9	Солнце и нейтрино.			ых часов	
	Детекторы солнечных нейтрино: South Dakota, SNO,	0	2	0	
	Super-Kamiokande, Borexino, SAGE и Gallex. Гипотеза	Онлай	H	T	
	нейтринных осцилляций. Новые детекторы солнечных	0	0	0	
	нейтрино LENS-2.				
8 - 9	Солнце и нейтрино.			ых часов	
	Детекторы солнечных нейтрино: South Dakota, SNO,	0	2	0	
	Super-Kamiokande, Borexino, SAGE и Gallex. Гипотеза	Онлай			
	нейтринных осцилляций. Новые детекторы солнечных	0	0	0	
	нейтрино LENS-2.				
9-16	Второй раздел	0	16	0	
9 - 10	Земля и нейтрино.	Всего	аудиторн	ых часов	
	Геонейтрино. Зачем изучать гео-нейтрино? Тепловой	0	2	0	
	поток Земли. Модели Земли.	Онлай	н		

		0	0	0
9 - 10	Земля и нейтрино.		т <u>о</u> аудиторных	
<i>)</i> - 10	Геонейтрино. Зачем изучать гео-нейтрино? Тепловой	0	тудиториы <i>г</i> 2	0
	поток Земли. Модели Земли.	Онлайн	1 ~	10
	поток эсмии. Модели эсмии.	Онлаин	0	0
10 - 11	200000000000000000000000000000000000000	_	1	
10 - 11	Земля и нейтрино.		аудиторных	
	Детекторы геонейтрино: Borexino, KamLAND. Поиск	0	2	0
	источников нейтрино в Земле, используя информацию о	Онлайн		Ι.
10 11	направлении нейтрино.	0	0	0
10 - 11	Земля и нейтрино.		аудиторных	
	Детекторы геонейтрино: Borexino, KamLAND. Поиск	0	2	0
	источников нейтрино в Земле, используя информацию о	Онлайі	1	1
	направлении нейтрино.	0	0	0
11 - 12	Земля и нейтрино.		аудиторных	х часов
	Поиск потока 40К из Земли. Детекторы будущего: Liquide-	0	2	0
	О (Opaque), детектор калиевых нейтрино.	Онлайн	H	
		0	0	0
11 - 12	Земля и нейтрино.	Всего а	аудиторных	х часов
	Поиск потока 40К из Земли. Детекторы будущего: Liquide-	0	2	0
	О (Opaque), детектор калиевых нейтрино.	Онлайн	H	•
			0	0
12 - 13	Вспышки сверхновых и нейтрино.	Всего а	аудиторных	х часов
	Существующие детекторы: Super-Kamiokande, SNO+,	0	2	0
	KamLAND, JUNO. Новые результаты измерений.	Онлайі	H	.
		0	0	0
12 - 13	Вспышки сверхновых и нейтрино.	Всего а	аудиторных	х часов
	Существующие детекторы: Super-Kamiokande, SNO+,		2	0
	KamLAND, JUNO. Новые результаты измерений.	Онлайі	H	
		0	0	0
13 - 14	Атмосферные нейтрино.	Всего а	аудиторных	х часов
	Эксперимент Super-Kamiokande. Осцилляции второго	0	2	0
	поколения нейтрино в третье. Исследование внутренних	Онлайі		
	слоев Земли с использованием атмосферных нейтрино.	0	0	0
13 - 14	Атмосферные нейтрино.	_	аудиторных	I
15 11	Эксперимент Super-Kamiokande. Осцилляции второго	0	<u>тудиториви</u> 2	0
	поколения нейтрино в третье. Исследование внутренних	Онлайн	т <u>~</u> Н	1 0
	слоев Земли с использованием атмосферных нейтрино.	0	0	0
14 - 15	Ускорительные нейтрино.	-	т <u>о</u> аудиторных	I
17 - I <i>J</i>	Эксперименты Super-Kamiokande, DUNE, OPERA	0	зудиторны <i>г</i> 2	0
	(подтверждение осцилляций второго поколения нейтрино	Онлайн		U
	в третье)	0	0	0
14 - 15				
14 - 13	Ускорительные нейтрино.		аудиторных Гэ	
	Эксперименты Super-Kamiokande, DUNE, OPERA	Оттой	<u> </u>	0
	(подтверждение осцилляций второго поколения нейтрино	Онлайі		
15 16	в третье)	0	0	0
15 - 16	Искусственные источники нейтрино.		аудиторных	
	Искусственные источники нейтрино 90Sr, 51Cr, 144Ce, 3H.	0	2	0
	Эксперименты с искусственными источниками нейтрино.	Онлай		
	Поиск экзотических осцилляций. Проверка симметрии	0	0	0
15 15	спектров антинейтрино и электронов в бета-распаде.	D		
15 - 16	Искусственные источники нейтрино.	Всего а	аудиторных	х часов

Эксперименты в природных водоемах: GVD на озере 0 2 0 Байкал, KM3, South pole в Антарктиде. Онлайн 0 0						
Поиск экзотических осцилляций. Проверка симметрии спектров антинейтрино и электронов в бета-распаде. 0 0 0 16 Внегалактические нейтрино. Всего аудиторных час обрания в природных водоемах: GVD на озере байкал, KM3, South pole в Антарктиде. 0 2 0 16 Внегалактические нейтрино. 0 0 0 3 Всего аудиторных час обрания в природных водоемах: GVD на озере 0 2 0		Искусственные источники нейтрино 90Sr, 51Cr, 144Ce, 3H.	0	2	0	
спектров антинейтрино и электронов в бета-распаде. Внегалактические нейтрино. Эксперименты в природных водоемах: GVD на озере Байкал, KM3, South pole в Антарктиде. Онлайн 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2		Эксперименты с искусственными источниками нейтрино.	Онлайн			
Внегалактические нейтрино. Эксперименты в природных водоемах: GVD на озере 0 2 0 Байкал, KM3, South pole в Антарктиде. Онлайн 0 0 0 16 Внегалактические нейтрино. Всего аудиторных час Эксперименты в природных водоемах: GVD на озере 0 2 0		Поиск экзотических осцилляций. Проверка симметрии	0	0	0	
Эксперименты в природных водоемах: GVD на озере Байкал, KM3, South pole в Антарктиде. 0 2 0 Онлайн 0 0 0 Внегалактические нейтрино. Эксперименты в природных водоемах: GVD на озере 0 2 0		спектров антинейтрино и электронов в бета-распаде.				
Байкал, КМ3, South pole в Антарктиде. Онлайн Онлайн 0 0 16 Внегалактические нейтрино. Эксперименты в природных водоемах: GVD на озере 0 2 0	16	Внегалактические нейтрино.	Всего аудиторных часов			
По висталактические нейтрино. Эксперименты в природных водоемах: GVD на озере Всего аудиторных час 0 2 0 2		Эксперименты в природных водоемах: GVD на озере	0	2	0	
Эксперименты в природных водоемах: GVD на озере 0 2 0		Байкал, KM3, South pole в Антарктиде.	Онлайн			
Эксперименты в природных водоемах: GVD на озере 0 2 0			0	0	0	
	16	Внегалактические нейтрино.		Всего аудиторных часов		
Байкал, KM3, South pole в Антарктиде. Онлайн О О О		Эксперименты в природных водоемах: GVD на озере	0	2	0	
		Байкал, KM3, South pole в Антарктиде.	Онлайн			
			0	0	0	

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекции проводятся с использованием обсуждений и дискуссий по заранее спланированному списку научных тем

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	7	(КП 1)
ПК-11	3-ПК-11	3, КИ-16
	У-ПК-11	3, КИ-16
	В-ПК-11	3, КИ-16
ПК-12	3-ПК-12	3, КИ-16
	У-ПК-12	3, КИ-16
	В-ПК-12	3, КИ-16
ПК-4	3-ПК-4	3, КИ-8
	У-ПК-4	3, КИ-8

	В-ПК-4	3, КИ-8
ПК-5	3-ПК-5	3, КИ-8
	У-ПК-5	3, КИ-8
	В-ПК-5	3, КИ-8
ПК-6	3-ПК-6	3, КИ-8
	У-ПК-6	3, КИ-8
	В-ПК-6	3, КИ-8
ПК-9	3-ПК-9	3, КИ-16
	У-ПК-9	3, КИ-16
	В-ПК-9	3, КИ-16
УК-1	3-УК-1	3, КИ-8
	У-УК-1	3, КИ-8
	В-УК-1	3, КИ-8
УК-3	3-УК-3	3, КИ-8
	У-УК-3	3, КИ-8
	В-УК-3	3, КИ-8
УК-4	3-УК-4	3, КИ-8
	У-УК-4	3, КИ-8
	В-УК-4	3, КИ-8
УКЦ-2	3-УКЦ-2	3, КИ-8
	У-УКЦ-2	3, КИ-8
	В-УКЦ-2	3, КИ-8
ПК-2	3-ПК-2	3, КИ-8
	У-ПК-2	3, КИ-8
	В-ПК-2	3, КИ-8
ПК-7	3-ПК-7	3, КИ-8
	У-ПК-7	3, КИ-8
	В-ПК-7	3, КИ-8

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	4 – «хорошо»	С	если он твёрдо знает материал, грамотно и
70-74] -	D	по существу излагает его, не допуская

			существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала, но не
	3 –		усвоил его деталей, допускает неточности,
60-64	«удовлетворительно»	Е	недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
			Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60	2 –	F	ошибки. Как правило, оценка
	«неудовлетворительно»	студентам, которые не могут продолж	«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Рассматриваются известные реакции взаимодействия нейтрино с веществом. Разбираются работающие и проектируемые детекторы нейтрино и эксперименты, в которых они используются. В конце рассмотрения каждого источника приводятся, возможные в будущем, эксперименты и обсуждается вопрос - какие результаты могут быть получены.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Для лучщего усвоения курса студентами рекомендуется активное взаимодействие с аудиторией, контроль посещения лекций и проведение заключительных лекций с участием представителей студенческой аудитории, желающих продемонстрировать свои знания.

Автор(ы):

Синев Валерий Витальевич

Рецензент(ы):

Куденко Ю.Г., профессор-совместитель каф.11