Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 2

от 26.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИЧЕСКАЯ ОПТИКА И ОСНОВЫ ФОТОНИКИ

Направление подготовки (специальность)

[1] 12.03.03 Фотоника и оптоинформатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	2	72	16	16	0		40	0	3
6	2	72	15	15	0		15	0	Э
Итого	4	144	31	31	0	0	55	0	

АННОТАЦИЯ

В курсе изучаются основы современной оптики и фотоники. Причем материал подобран так, чтобы в максимальной степени облегчить студентам в дальнейшем более подробное изучение этого вопроса. Основное внимание уделяется фундаментальным вопросам современной оптики и фотоники — основным свойствам электромагнитных волн, основам оптики кристаллов, теории дисперсии, интерференции, дифракции. Кроме того рассмотрены вопросы взаимодействия резонансного излучения с веществом, физика оптических резонаторов и основы физики лазеров. Даются также представления об оптике наноструктур.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель освоения учебной дисциплины - дать основные представления об оптике и фотонике на уровне, позволяющем дальнейшее углубленное изучение этой и смежных с ней лиспиплин

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Профессиональнфй модуль, обязательная дисциплина

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследовательско	рй	
Анализ	элементная база,	ПК-1 [1] - способен к	3-ПК-1[1] - Знать
поставленной	системы и технологии	анализу поставленной	современное состояние
задачи	интегральной,	задачи исследований в	развития фотоники и
исследований в	волоконной и	области фотоники и	оптоинформатики;
области фотоники	градиентной оптики, а	оптоинформатики	У-ПК-1[1] - уметь
и оптоинформатики	также микрооптики		анализировать
на основе подбора	элементная база	Основание:	исходные требования
и изучения	полупроводниковых,	Профессиональный	при решении задач в
литературных и	волоконных и планарных	стандарт: 40.011	области фотоники и
патентных	лазеров элементная база,		оптоинформатики
источников	системы, материалы,		проводить поиск

методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации элементная база и системы преобразования и отображения информации элементная база и системы на основе наноразмерных и фотоннокристаллических структур системы оптических и квантовых вычислений и оптические компьютеры оптические системы искусственного интеллекта устройства и системы компьютерной фотоники

научнотехнической информации по теме решаемой задачи и аткнроту корректировать требования к решаемой задаче в области фотоники и оптоинформатики; В-ПК-1[1] - Владеть навыками анализа простых исследовательских задач в области фотоники и оптоинформатики

производственно-технологической

Осуществление наладки, настройки и опытной проверки отдельных видов элементов, устройств и систем фотоники и радиофотоники в процессе НИОКР и опытного производства

элементная база, системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики элементная база полупроводниковых, волоконных и планарных лазеров элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации элементная база и системы преобразования и отображения информации элементная база и системы на основе наноразмерных и фотоннокристаллических структур системы оптических и квантовых вычислений и оптические компьютеры оптические системы искусственного интеллекта устройства и

ПК-7 [1] - способен к разработке технических заданий на конструирование отдельных узлов приспособлений, оснастки и специального инструмента, предусмотренных технологией

Основание: Профессиональный стандарт: 40.011 3-ПК-7[1] - Знать требования, предъявляемые к технической документации при конструировании отдельных узлов приспособлений, оснастки и специального инструмента; У-ПК-7[1] - Уметь анализировать исходные данные и технические требования, предъявляемые к конструируемым узлам приспособлений, оснастки и специального инструмента; формулировать и обосновывать требования к разрабатываемым узлам и элементам; В-ПК-7[1] - Владеть знаниями по вопросам стандартизации,

	системы компьютерной фотоники		метрологии, технике измерений и контроля качества навыками
			разработки проектной и рабочей технической
			документации
Осуществление	элементная база,	ПК-8 [1] - способен	3-ПК-8[1] - Знать
наладки, настройки	системы и технологии	разрабатывать	опасные и вредные
и опытной	интегральной,	оптимальные решения	эксплуатационные
проверки	волоконной и	при создании	факторы, их
отдельных видов	градиентной оптики, а	продукции	предельнодопустимые
элементов,	также микрооптики	приборостроения с	уровни воздействия на
устройств и систем фотоники и	элементная база полупроводниковых,	учетом требований качества, стоимости,	человека, технику и окружающую среду
радиофотоники в	волоконных и планарных	сроков исполнения,	при эксплуатации
процессе НИОКР и	лазеров элементная база,	конкурентоспособности	техники и технологий
ОПЫТНОГО	системы, материалы,	и безопасности	профессиональной
производства	методы и технологии,	жизнедеятельности, а	деятельности;
	обеспечивающие	также экологической	элементную базу,
	оптическую передачу,	безопасности	используемую в
	прием, обработку, запись	0	изделиях фотоники и
	и хранение информации элементная база и	Основание: Профессиональный	оптоинформатики основные области
	системы преобразования	стандарт: 40.037	применения устройств
	и отображения	Стандарт. 40.037	фотоники и
	информации элементная		оптоинформатики ;
	база и системы на основе		У-ПК-8[1] - Уметь
	наноразмерных и		анализировать
	фотоннокристаллических		технические решения
	структур системы		при создании
	оптических и квантовых		продукции
	вычислений и оптические компьютеры		приборостроения с учетом требований
	оптические системы		качества, стоимости,
	искусственного		сроков исполнения,
	интеллекта устройства и		конкурентоспособности
	системы компьютерной		и безопасности
	фотоники		жизнедеятельности, а
			также экологической
			безопасности
			обосновывать
			предлагаемые
			технические решения при создании
			продукции
			приборостроения
			подбирать по заданным
			параметрам и
			характеристикам
			элементную базу;
			В-ПК-8[1] - Владеть
			методами работы с

	научнотехнической
	литературой и
	информацией

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Интеллектуальное воспитание	Создание условий, обеспечивающих, формирование культуры умственного труда (В11)	Использование воспитательного потенциала дисциплин гуманитарного, естественнонаучного, общепрофессионального и профессионального модуля для формирования культуры умственного труда посредством вовлечения студентов в учебные исследовательские задания, курсовые работы и др.
Профессиональное и трудовое воспитание	Создание условий, обеспечивающих, формирование глубокого понимания социальной роли профессии, позитивной и активной установки на ценности избранной специальности, ответственного отношения к профессиональной деятельности, труду (В14)	1.Использование воспитательного потенциала дисциплин естественнонаучного и общепрофессионального модуля для: - формирования позитивного отношения к профессии инженера (конструктора, технолога), понимания ее социальной значимости и роли в обществе, стремления следовать нормам профессиональной этики посредством контекстного обучения, решения практикоориентированных ситуационных задач формирования устойчивого интереса к профессиональной деятельности, способности критически, самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; - формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения

		T
The sheet was a series		совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: - формирования навыков системного видения роли и значимости выбранной профессии в социально-экономических отношениях через контекстное обучение
Профессиональное и трудовое воспитание	Создание условий, обеспечивающих, формирование культуры исследовательской и инженерной деятельности (В16)	Использование воспитательного потенциала дисциплин "Основы конструирования и САПР", "Курсовой проект: основы конструирования и САПР", "Инженерная и компьютерная графика", "Детали машин и основы конструирования" для формирования навыков владения эвристическими методами поиска и выбора технических решений в условиях неопределенности через специальные задания (методики ТРИЗ, морфологический анализ, мозговой штурм и др.), культуры инженера-разработчика через организацию проектной, в том числе самостоятельной работы обучающихся с использованием программных пакетов.
профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии",

		"Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научно-исследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование творческого инженерного/профессионального мышления, навыков организации коллективной проектной деятельности (В22)	1.Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: -формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением

роста общей эффективности при
распределении проектных задач в
соответствии с сильными
компетентностными и
эмоциональными свойствами
членов проектной группы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	5 Семестр Введение, фундаментальные понятия	1-8	8/8/0		25	КИ-8	3-ПК- 1, 3-ПК- 7, 3-ПК- 8
2	Оптические свойства фотонных систем	9-16	8/8/0		25	КИ-16	У- ПК-1, В- ПК-1, У- ПК-7, В- ПК-7, У- ПК-8, В- ПК-8
	Итого за 5 Семестр		16/16/0		50		1110-0
	Контрольные мероприятия за 5 Семестр		- 3.7 37 3		50	3	3-ПК- 1, У- ПК-1, В- ПК-1
1	6 Семестр Основы нанофотоники	1-8	8/8/0		25	КИ-8	3-ПК- 1, 3-ПК-

						7, 3-ПК
						8
2	Методы исследований и диагностики	9-15	7/7/0	25	КИ-15	У- ПК-7
						В- ПК-7
						у- ПК-8
						B-
						ПК-8 У-
						ПК-1 В-
						ПК-1
	Итого за 6 Семестр		15/15/0	50		
	Контрольные мероприятия за 6 Семестр			50	Э	3-ПК 1, У-
						ПК-1 В-
						ПК-1 3-ПК
						7, y-
						ПК-7
						В- ПК-7
						3-ПК 8,
						У-
						ПК-8
						В- ПК-8
						1117-6

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
3	Зачет
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	5 Семестр	16	16	0
1-8	Введение, фундаментальные понятия	8	8	0
	Тема 1	Всего	аудиторн	ных часов
	Основные свойства электромагнитных волн. Уравнения	2	2	0
	Максвелла, поперечная электромагнитная волна, плоские	Онла	 йн	
	монохроматические волны. Энергия, переносимая	0	0	0
	электромагнитной волной, скорость распространения			
	волны. Стоячие электромагнитные волны			
	Тема 2	Всего	аудиторн	ных часов
	Отражение и преломление электромагнитных волн. Законы	2	2	0
	отражения и преломления электромагнитных волн,	Онла	 йн	
	формулы Френеля. Отражение электромагнитных волн от	0	0	0
	поверхности металла.		0	ľ
	Тема 3	Всего	 аудиторн	ILIV HACOD
	Элементы оптики кристаллов. Распространение	2	$\frac{1}{2}$	0
	электромагнитной волны в анизотропной среде. Тензор	Онла	<u> </u>	0
	диэлектрической проницаемости. Двойное			
		0	0	0
	лучепреломление. Эффект Керра, эффект Покельса. Вращение плоскости поляризации, эффект Фарадея.			
		D		
	Тема 4		аудиторн	
	Электронная теория дисперсии. Уравнения дисперсии.	2	2	0
	Механизмы резонансного поглощения электромагнитного	Онла		
	излучения. Возбуждение электронных, колебательных и	0	0	0
	вращательных уровней в молекулярных средах.			
	Аномальная дисперсия. Дисперсия в плазменных средах.		_	
9-16	Оптические свойства фотонных систем	8	8	0
	Тема 5		аудиторн	
	Интерференция света. Понятие когерентности колебаний,	2	2	0
	когерентные колебания в оптике. Интерференционные	Онла	йн	
	картины. Диэлектрические интерференционные слои.	0	0	0
	Интерферометр Фабри-Перо и его основные			
	характеристики.			
	Тема 6	Всего	аудиторн	ных часов
	Дифракция света. Принцип Гюйгенса-Френеля. Дифракция	2 2 0		
	на круглом экране и круглой диафрагме. Векторная	Онла	йн	
	диафрагма для определения амплитуды коллебания,	0	0	0
	спираль Корню. Дифракция света на правильной			
	структуре, дифракционная решетка. Разложение излучения			
	в спектр и основные свойства спектральных приборов.			
	в спектр и основные своиства спектральных приобров.			
	Понятие о голографии			
		Всего	<u> </u> э аудиторн	ных часов
	Понятие о голографии Тема 7	Bcero	 о аудиторн 2	ных часов
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое	2	2	
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела.	2 Онла		0
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа,	2	2	1
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел.	2 Онла 0	2 йн 0	0
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел. Тема 8	2 Онла 0 Всего	2 йн 0 э аудиторн	0 0 ных часов
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел. Тема 8 Резонансное взаимодействие электромагнитного излучения	2 Онла 0 Всего 2	2 йн 0 э аудиторн 2	0
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел. Тема 8 Резонансное взаимодействие электромагнитного излучения с атомами и молекулами. Коэффициенты Эйнштейна и их	2 Онла 0 Всего 2 Онла	2 йн 0 э аудиторн 2 йн	0 0 ных часов 0
	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел. Тема 8 Резонансное взаимодействие электромагнитного излучения с атомами и молекулами. Коэффициенты Эйнштейна и их взаимосвязь. Поглощение и усиление света	2 Онла 0 Всего 2 Онла 0	2 йн 0 э аудиторн 2 йн 0	0 0 ных часов 0
1-8	Понятие о голографии Тема 7 Основы квантовой оптики. Равновесное тепловое излучение. Законы излучения абсолютно черного тела. Формула Планка, понятие фотона. Закон Киргоффа, излучательная и поглощательная способность твердых тел. Тема 8 Резонансное взаимодействие электромагнитного излучения с атомами и молекулами. Коэффициенты Эйнштейна и их	2 Онла 0 Всего 2 Онла	2 йн 0 э аудиторн 2 йн	0 0 ных часов 0

	Оптические резонаторы, понятие о модах оптического	1	1	0
	резонатора, продольные и поперечные моды. Добротность	Онлайн		
	оптического резонатора. Оптическая положительная	0	0	0
	обратная связь.			
	Тема 2	Всего а	аудиторных	часов
	Микрорезонаторы. Моды микрорезонаторов. Методы	1	1	0
	расчета основных свойств оптических микрорезонаторов.	Онлайі	7	
	Понятие о фотонных кристаллах. 1-2-3-х мерные фотонные	0	0	0
	кристаллы.			
	Тема 3	Всего а	цудиторных 1	часов
	Принципы усиления электромагнитной волны оптического	2	2	0
	диапазона. Активная среда, накачка активной среды.	Онлайі	<u> </u>	10
	Понятие о лазерах.	0	0	0
	Тема 4	-	_	1 -
			аудиторных 2	
	Понятие о 3D, 2D, 1D – наносистемах. Эффект	2	-	0
	размерного квантования. Частица в одномерной	Онлайн	1	
	потенциальной яме. Решение уравнения Шредингера.	0	0	0
	Энергетические уровни, плотность состояний.			
	Сферическая потенциальная яма. Уравнение Шредингера,			
	момент количества движения. Разделение переменных,			
	уравнения для координатной и угловой части волновой			
	функции.			
	Тема 5		аудиторных	
	Современные методы и технологии получения наносистем.	2	2	0
	Понятие о термическом и лазерном вакуумном	Онлайі	H	
	напылении. Понятие о физико-химических методах	0	0	0
	получения наносистем. Методы коллоидной химии и			
	обратных мицелл.			
9-15	Методы исследований и диагностики	7	7	0
	Тема 6	Всего а	аудиторных	часов
	Обзор основных методов и физических принципов	3	3	0
	характеризации наносистем. Интерферометрия для	Онлайі	H	
	определения толщин тонких пленок. Основные типы	0	0	0
	интерферометров, понятие аппаратной функции			
	интерферометра. Интерференционный микроскоп.			
	Тема 7	Всего а	аудиторных	часов
	Рассеяние электромагнитного излучения на нано- и	2	2	0
	микрочастицах. Понятие о рассеянии Рэлея и Ми.		H	1
	Рассеяние оптического излучения, как метод определения	Онлайі	0	0
	размера микро- и наночастиц. Приборы для определения			
	размеров наночастиц, работающие на основе рассеяния.			
	Современные приборы для определения размеров			
	наночастиц, работающие на основе рассеяния оптического			
	излучения.			
	Тема 8	Beero	⊥ аудиторных	TACOR
	Понятие о радиофотонике. Планарные оптические схемы	2	<u>1удиторных</u> 2	0
	понятие о радиофотонике. планарные оптические схемы		1 —	10
		Онлайн	1	0
		0	0	0

Сокращенные наименования онлайн опций:

Обозна	Полное наименование

чение		
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание 5 Семестр		
	Тема 1		
	Основные свойства электромагнитных волн. Уравнения		
	Максвелла, поперечная электромагнитная волна, плоские		
	монохроматические волны. Энергия, переносимая		
	электромагнитной волной, скорость распространения		
	волны. Стоячие электромагнитные волны		
	Тема 2		
	Отражение и преломление электромагнитных волн.		
	Законы отражения и преломления электромагнитных волн,		
	формулы Френеля. Отражение электромагнитных волн от		
	поверхности металла.		
	Тема 3		
	Элементы оптики кристаллов. Распространение		
	электромагнитной волны в анизотропной среде. Тензор		
	диэлектрической проницаемости. Двойное		
	лучепреломление. Эффект Керра, эффект Покельса.		
	Вращение плоскости поляризации, эффект Фарадея.		
	Тема 4		
	Электронная теория дисперсии. Уравнения дисперсии.		
	Механизмы резонансного поглощения электромагнитного		
	излучения. Возбуждение электронных, колебательных и		
	вращательных уровней в молекулярных средах.		
	Аномальная дисперсия. Дисперсия в плазменных средах.		
	Тема 5		
	Интерференция света. Понятие когерентности колебаний,		
	когерентные колебания в оптике. Интерференционные		
	картины. Диэлектрические интерференционные слои.		
	Интерферометр Фабри-Перо и его основные		
	характеристики.		
	Тема 6		
	Дифракция света. Принцип Гюйгенса-Френеля.		
	Дифракция на круглом экране и круглой		
	диафрагме. Векторная диафрагма для определения		
	амплитуды коллебания, спираль Корню. Дифракция света		
	на правильной структуре, дифракционная решетка.		
	Разложение излучения в спектр и основные свойства		
	спектральных приборов. Понятие о голографии		

	Тема 7
	Основы квантовой оптики. Равновесное тепловое
	излучение. Законы излучения абсолютно черного тела.
	Формула Планка, понятие фотона. Закон Киргоффа,
	излучательная и поглощательная способность твердых
	тел.
	Тема 8
	Резонансное взаимодействие электромагнитного
	излучения с атомами и молекулами. Коэффициенты
	Эйнштейна и их взаимосвязь. Поглощение и усиление
	CBetta
	6 Семестр
	Тема 1
	Оптические резонаторы, понятие о модах оптического
	резонатора, продольные и поперечные моды. Добротность
	оптического резонатора. Оптическая положительная
	обратная связь.
	Тема 2
	Микрорезонаторы. Моды микрорезонаторов. Методы
	расчета основных свойств оптических микрорезонаторов.
	Понятие о фотонных кристаллах. 1-2-3-х мерные
	фотонные кристаллы.
	Тема 3
	Принципы усиления электромагнитной волны оптического
	диапазона. Активная среда, накачка активной среды.
	Понятие о лазерах.
	Tema 4
	Понятие о 3D, 2D, 1D – наносистемах. Эффект
	размерного квантования. Частица в одномерной
	потенциальной яме. Решение уравнения Шредингера.
	Энергетические уровни, плотность состояний. Сферическая потенциальная яма. Уравнение Шредингера,
	момент количества движения. Разделение переменных,
	уравнения для координатной и угловой части волновой
	уравнения для координатной и угловой части волновой функции.
	функции. Тема 5
	Современные методы и технологии получения наносистем. Понятие о термическом и лазерном
	1
	вакуумном напылении. Понятие о физико-химических методах получения наносистем. Методы коллоидной
	химии и обратных мицелл.
	Тема 6
	Обзор основных методов и физических принципов
	характеризации наносистем. Интерферометрия для
	определения толщин тонких пленок. Основные типы
	интерферометров, понятие аппаратной функции
	интерферометра. Интерференционный микроскоп. Тема 7
I	Рассеяние электромагнитного излучения на нано- и
	LARRIEDOUGOTHUOV HOHOTHO O BOOGGETTITE DOUGG ET MET
	микрочастицах. Понятие о рассеянии Рэлея и Ми.
	микрочастицах. Понятие о рассеянии Рэлея и Ми. Рассеяние оптического излучения, как метод определения размера микро- и наночастиц. Приборы для определения

размеров наночастиц, работающие на основе рассеяния.
Современные приборы для определения размеров
наночастиц, работающие на основе рассеяния оптического
излучения.
Тема 8
Понятие о радиофотонике. Планарные оптические схемы

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Используются современные предметно- и личностно-ориентированные образовательные технологии

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы	Аттестационное	Аттестационное
	освоения	мероприятие (КП 1)	мероприятие (КП 2)
ПК-1	3-ПК-1	3, КИ-8	Э, КИ-8
	У-ПК-1	3, КИ-16	Э, КИ-15
	В-ПК-1	3, КИ-16	Э, КИ-15
ПК-7	3-ПК-7	КИ-8	Э, КИ-8
	У-ПК-7	КИ-16	Э, КИ-15
	В-ПК-7	КИ-16	Э, КИ-15
ПК-8	3-ПК-8	КИ-8	Э, КИ-8
	У-ПК-8	КИ-16	Э, КИ-15
	В-ПК-8	КИ-16	Э, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать

			теорию с практикой, использует в
			ответе материал монографической
0.5.00			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
	4 – « <i>xopouo</i> »		материал, грамотно и по существу
70-74	1 (Mopoliton		излагает его, не допуская
/0-/4		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала,
	3 — «удовлетворительно»		но не усвоил его деталей, допускает
60-64		Е	неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
			Оценка «неудовлетворительно»
		F	выставляется студенту, который не
	0 2 — «неудовлетворительно»		знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
Ниже 60			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 93 Курс общей физики Т. 3 Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц, : , 2022
- 2. ЭИ К 49 Наноплазмоника: , Москва: Физматлит, 2010
- 3. ЭИ Л 22 Оптика: учебное пособие, Москва: Физматлит, 2021
- 4. ЭИ И 26 Оптоэлектроника и нанофотоника: учебное пособие, Санкт-Петербург: Лань, 2020
- 5. ЭИ В 18 Физические основы оптики: , Санкт-Петербург: Лань, 2022
- 6. 535 К17 Волновая оптика : Учеб.пособие для вузов, Калитеевский Н.И., М.: Высш.школа, 1978
- 7. ЭИ М31 Введение в физику наноструктур : учебное пособие для вузов, М. М. Маслов, Л. А. Опенов, Москва: НИЯУ МИФИ, 2011
- 8. 536.1 К17 Волновая оптика: , Н.И. Калитеевский, М.: Наука, 1971

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В курсе изучаются основы современной оптики и фотоники. При изучении курса студент должен твердо усвоить фундаментальные вопросы современной оптики и фотоники – основные свойства электромагнитных волн, основы оптики кристаллов, теории дисперсии, интерференции, дифракции. Кроме того необходимо иметь четкие представления о механизмах взаимодействии резонансного излучения с веществом, физике оптических резонаторов и основам физики лазеров, а также элементарным фотопроцессам в наноструктурах.

Для освоения первой части курса (основы физической оптики) необходимо уверенно владеть знаниями в области оптики курса общей физики, а также раздела «Теория поля» курса теоретической физики для университетов. Правильное использование этого материала позволит студенту быстро и эффективно овладеть фундаментальными вопросы современной оптики — свойствами электромагнитных волн, явлениями интерференции, дифракции, теории дисперсии, а на их основе оптической и цифровой голографии.

При изучении раздела «Основы взаимодействия оптического излучения с веществом» необходимо эффективно использовать знания в области атомной физики курса общей физики, а также основ квантовой механики и статистической физики. Это позволит достаточно глубоко изучить основы взаимодействия резонансного излучения с двухуровневой системой исходя из феноменологической теории Эйнштейна, получить представление о фундаментальных радиационных переходах. Кроме того, приобретенные знания позволят получить представление об инверсии населенности, усилении электромагнитного излучения и лазерной генерации.

При освоении раздела «Основы нанофотоники» необходимо эффективно использовать знания в области молекулярной физики, в частности методов получения вакуума. Это позволит достаточно глубоко изучить методы вакуумного напыления для получения 1D — наноструктур. Определенные сложности возникают при освоении физико-химических и химических методов получения наноструктур, в частности, метода обратных мицелл, коллоидных методов получения квантовых точек и т.п. Для полного изучения этих частей раздела требуется достаточно подробное знание физико-химии мицеллярных растворов, а также основ коллоидной химии. Знание физики твердого тела, электронной теории (даже в элементарном варианте), теории фононов, теории переноса.

При изложении вопроса о радиационных переходах в наноструктурах (в частности, полупроводниковых квантовых точках) необходимо опираться на аналогию между сферическими квантовыми точками и собственно атомами.

Самостоятельная работа студентов включает решение задач, предложенных преподавателем на лекциях и семинарах.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При изложении первой части курса (основы физической оптики) необходимо учитывать знания студентов в области оптики курса общей физики, а также раздела «Теория поля» курса теоретической физики для университетов. Правильное использование этого материала позволит преподавателю быстро и эффективно объяснить студентам фундаментальные вопросы современной оптики — свойства электромагнитных волн, явления интерференции, дифракции, теорию дисперсии, а на их основе оптическую и цифровую голографию.

При изложении раздела «Основы взаимодействия оптического излучения с веществом» необходимо эффективно использовать знания студентов в области атомной физики курса общей физики, а также основ квантовой механики и статистической физики. Это позволит достаточно глубоко изложить основы взаимодействия резонансного излучения с двухуровневой системой исходя из феноменологической теории Эйнштейна, дать представление о фундаментальных радиационных переходах, ввести понятие вероятности радиационного перехода, населенности уровней, сформулировать кинетические уравнения для заселенности уровней в двухуровненой системе, а также продемонстрировать их решение для стационарного случая.

При изложении раздела «Основы нанофотоники» необходимо эффективно использовать знания студентов в области молекулярной физики, в частности методов получения вакуума. Это позволит достаточно глубоко изложить методы вакуумного напыления для получения 1D – наноструктур. Определенные сложности возникают при объяснении физико-химических и химических методов получения наноструктур, в частности, метода обратных мицелл, коллоидных методов получения квантовых точек и т.п. Для доступного изложения этих частей раздела требуется достаточно подробное изложение физико-химии мицеллярных растворов, а также основ коллоидной химии. Знание физики твердого тела, электронной теории (даже в элементарном варианте), теории фононов, теории переноса в принципе позволяет изложить физику электронных состояний, энергетических уровней для квантовых точек. Свойства сферических и цилиндрических наноструктур следует отложить на 7-й и 8-й семестр, когда у студентов появятся достаточно знаний по дисциплинам «Уравнения математической физики» и «Квантовая механика».

При изложении вопроса о радиационных переходах в наноструктурах (в частности, полупроводниковых квантовых точках) необходимо опираться на аналогию между сферическими квантовыми точками и собственно атомами.

Самостоятельная работа студентов включает решение задач, предложенных преподавателем на лекциях и семинарах

Автор(ы):

Чистяков Александр Александрович, д.ф.-м.н., с.н.с.