Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА ПРИКЛАДНОЙ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИФТИС

Протокол № 1

от 26.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЦИФРОВАЯ И ЯДЕРНАЯ ЭЛЕКТРОНИКА

Направление подготовки (специальность)

[1] 12.03.01 Приборостроение

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	16	16	16		24	0	Э
Итого	3	108	16	16	16	16	24	0	

АННОТАЦИЯ

В рамках курса изучаются различные методы формирования сигнала, его аналоговая обработка и преобразование в цифровой код. Изучаются характеристики спектрометрических усилителей, амплитудно-цифровые и время—цифровые преобразователи, методы дискриминации частиц по различным параметрам импульса детектора.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины является изучение электронных методов съема и обработки информации, поступающей с детекторов излучения.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения дисциплины необходимо владеть основами физики взаимодействия излучения с веществом и регистрации ядерного излучения.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
прои	зводственно-технологич	неский	
Проводить анализ научно-технической информации по разработке ядернофизической, электрофизической киберфизической аппаратуры и комплексов	ядерно-физические, электрофизические и киберфизические приборы и устройства	ПК-3.2 [1] - Способен осуществлять анализ научно-технической информации по разработке оптотехники, ядернофизической, электрофизической аппаратуры и комплексов	3-ПК-3.2[1] - знать методики сбора и обработки научнотехнической информации, актуальные российские и зарубежные источники информации по ядерно-физическому, электрофизическому приборостроению;;
		Профессиональный	У-ПК-3.2[1] - уметь

		стандарт: 29.004	применять методики поиска, сбора и обработки информации; уметь осуществлять критический анализ и синтез информации, полученной из разных источников; В-ПК-3.2[1] - владеть методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных зада
Рассчитывать характеристики ядерно-физической, киберфизической и электрофизической аппаратуры	характеристики ядерно-физической, киберфизической и электрофизической аппаратуры	ПК-3.4 [1] - Способен осуществлять работы по математическому моделированию прохождение ядерного излучения через вещество и создавать простейшие модели ядерно-физического прибора Основание: Профессиональный стандарт: 29.004	З-ПК-3.4[1] - знать основные принципы взаимодействия ядерного излучения с веществом; знать современный язык программирования для составления простейших математической модели; У-ПК-3.4[1] - уметь составлять математическую модель ядернофизического прибора; уметь грамотно интерпретировать полученные результаты и вносить уточнения в разрабатываемую модель; В-ПК-3.4[1] - владеть современными языками программирования и пакетами программ для выполнения работ по математическому моделированию процессов взаимодействия ядерного излучения с

			веществом.
Проводить испытания	ядерно-физические,	ПК-10 [1] - Способен	3-ПК-10[1] - знать
новых и	электрофизические и	проводить испытания	назначение,
модернизированных	киберфизические	НОВЫХ И	характеристики и
образцов продукции	приборы и	модернизированных	принцип работы
	устройства	образцов продукции	универсального
		Table 1	оборудования для
		Основание:	контроля и испытаний
		Профессиональный	образцов продукции;
		стандарт: 40.010	знать методы
		, , <u>1</u>	испытаний и контроля
			параметров и
			характеристик
			образцов продукции.;
			У-ПК-10[1] - уметь
			готовить
			сопроводительные и
			накопительные формы
			документов для
			регистрации
			результатов измерений
			и контроля; уметь
			рассчитывать
			оптимальные режимы
			работы контрольно
			измерительного
			оборудования; уметь
			анализировать
			результаты контроля
			параметров и
			характеристик
			образцов продукции
			для разработки
			предложений по
			совершенствованию
			технологических
			процессов
			изготовления и
			сборки.;
			В-ПК-10[1] - владеть
			навыками проведения
			контроля параметров и
			характеристик
			образцов продукции и
			разработки
			предложений по
			оптимизации
			технологического
			процесса и
			повышению качества
			изготавливаемых
			приборов.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1. Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин "Введение
	формирование	в физику взаимодействия
	профессиональной	ионизирующего излучения с
	ответственности, этики и	веществом", "Введение в
	культуры инженера-	нейтронную физику" для
	разработчика комплексных	формирования профессиональной
	технических систем (В41)	ответственности, творческого
	, ,	инженерного мышления путем
		проведения физических
		экспериментов по заданный
		методикам, учитывая
		конструктивные особенности
		разрабатываемой ядерно-
		физической, электрофизической и
		киберфизической аппаратуры и
		составления описания проводимых
		исследований, отчетов, анализа
		результатов и подготовки научных
		публикаций. 2. Использование
		воспитательного потенциала
		дисциплины «Основы
		проектирования киберфизических
		устройств и систем» для
		формирования приверженности к
		профессиональным ценностям,
		этике и культуре инженера-
		разработчика, повышения интереса
		к инженерно-проектной
		деятельности через изучение
		вопросов применения методов
		программной инженерии в
		проектировании, повышения
		радиационной стойкости
		аппаратуры и учета внешних
		воздействующих факторов,
		ознакомление с технологиями
		промышленного производства
		посредством погружения
		студентов в работу научных
		лабораторий.
Профессиональное	Создание условий,	1. Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин "Введение
	формирование творческого	в физику взаимодействия
	инженерного мышления и	ионизирующего излучения с
	стремления к постоянному	веществом", "Введение в
	самосовершенствованию (В43)	нейтронную физику" для
		формирования профессиональной

ответственности, творческого инженерного мышления путем проведения физических экспериментов по заданный методикам, учитывая конструктивные особенности разрабатываемой ядернофизической, электрофизической и киберфизической аппаратуры и составления описания проводимых исследований, отчетов, анализа результатов и подготовки научных публикаций. 2. Использование воспитательного потенциала дисциплины «Основы проектирования киберфизических устройств и систем» для формирования приверженности к профессиональным ценностям, этике и культуре инженераразработчика, повышения интереса к инженерно-проектной деятельности через изучение вопросов применения методов программной инженерии в проектировании, повышения радиационной стойкости аппаратуры и учета внешних воздействующих факторов, ознакомление с технологиями промышленного производства посредством погружения студентов в работу научных лабораторий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенпии
	7 Семестр						
1	Первый раздел	1-8	8/8/8		25	КИ-8	3-ПК-

						3.2, y- ΠK- 3.2, B- ΠK- 3.2, 3-ΠK- 3.4, y- ΠK- 3.4,
						В- ПК- 3.4
2	Второй раздел	9-16	8/8/8	25	КИ-16	3-ПК- 10, У- ПК- 10, В- ПК- 10
	Итого за 7 Семестр		16/16/16	50		
	Контрольные мероприятия за 7 Семестр * – сокращенное наим		10/10/10	50	Э	3-IIK- 3.2, y- IIK- 3.2, B- IIK- 3.2, 3-IIK- 3.4, B- IIK- 3.4

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	7 Семестр	16	16	16
1-8	Первый раздел	8	8	8
1	Задачи электронных методов в ядерно-физическом	Всего а	аудиторных	часов
	эксперименте	1	1	0
	Введение. Аналоговые и цифровые методы. Съем сигнала с	Онлайн	H	
	детектора. Роль и выбор RC-нагрузки	0	0	0
2	Методы счета событий	Всего а	аудиторных	часов
	Абсолютный счет событий. Просчеты счетных устройств.	1	1	0
	Выбор оптимального мертвого времени. Счетчики и	Онлайн	H	
	регистры, методы уменьшения просчетов. Аналоговые и	0	0	0
	цифровые измерители скорости счета.			
3 - 4	Спектрометрический тракт	Всего а	аудиторных	часов
	Спектрометрические особенности различных типов	2	2	4
	детекторов. Основные характеристики линейных	Онлайн	H	
	импульсных усилителей. Шумы усилителей и методы	0	0	0
	оптимизации отношения сигнала к шуму.			
	Факторы, влияющие на конечное энергетическое			
	разрешение спектрометрического тракта. Наложение			
	импульсо, частотные и амплитудные перегрузки.			
	Оптимальное формирование сигнала. Усилители			
	напряжения, тока, зарядочувствительные усилители.			
5	Методы амплитудной дискриминации	Всего а	аудиторных	часов
	Методы амплитудной дискриминации и селекции.	1	1	0
	Линейные схемы пропускания	Онлайн	Ŧ	
		0	0	0
6 - 7	Амплитудный анализ	Всего а	аудиторных	часов
	Структура амплитудного анализатора. Методы работы "по	2	2	0
	живому времени". Методы кодирования амплитуд	Онлайн	H	
	импульсов (амплитудно-цифровые преобразователи)	0	0	0
8	Временной анализ	_	цудиторных 1	1
	Методы временного анализа и временной селекции.	1	1	4
	Методы формирования точной временной отметки.	Онлайн	T	ı
	Особенности формирования временной отметки для	0	0	0
	детекторов различных типов. Временное разрешение			
	различных типов детекторов			
9-16	Второй раздел	8	8	8
9 - 10	Методы совпадений и антисовпадений	Всего а	удиторных	часов
	Основные параметры схем совпадений. Выбор	2	2	0
	оптимального разрешающего времени. Классификация и	Онлайн	H	1
	конструктивные особенности схем совпадений.	0	0	0
	Мажоритарные схемы совпадений. Особенности метода и			
	схем совпадений.			
11	Методы кодирования временных интервалов	Всего а	цудиторных 1	часов
	Методы временного анализа. Методв аналогового	1	1	0
	преобразования и кодирования временных интервалов.	Онлайн	H	1
	Метод времени пролета. Методы время-координатной	0	0	0
	компенсации			
12	Многопараметровый анализ	Всего	⊥ аудиторных	часов
	Особенности кодирования информации в	1	1	4

	многодетекторных системах	Онлайн	I	
		0	0	0
13	Дискриминация частиц по форме импульса	Всего а	удиторных	часов
	Методы дискриминации частиц по форме импульса	1	1	0
	детектора. п-гамма разделение	Онлайн	I	
		0	0	0
14 - 15	Системы сбора информации в многодетекторных	Всего а	удиторных	часов
	системах	2	2	0
	Системы сбора и обработки информации в	Онлайн	I	
	многодетекторных системах. Триггер эксперимента	0	0	0
16	Современные стандарты ядерной электроники	Всего а	удиторных	часов
	Система NIM, ситема КАМАК и другие	1	1	4
		Онлайн	I	
		0	0	0

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	7 Семестр
1 - 4	Работа 1
	Цифровое контрольно-измерительное лабораторное
	оборудование. Основы программирования и
	практического применения.
5 - 8	Работа 2
	Интегрированная среда разработки аппаратно-
	программных средств для прототипирования систем
	электроники.
9 - 12	Работа 3
	AVR микроконтроллеры семейства "mega"
9 - 12	Работа 4
	Порты и встроенные ресурсы микроконтроллеров AVR
	(счетчики/таймеры, АЦП, прерывания).
13 - 16	Работа 5
	Внешние интерфейсы микроконтроллеров AVR. Модули
	АЦП и ЦАП.

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание		
	7 Семестр		
1	Задачи электронных методов в ядерно-физическом		
	эксперименте		
	Введение. Аналоговые и цифровые методы. Съем сигнала		
	с детектора. Роль и выбор RC-нагрузки		
2	Методы счета событий		
	Абсолютный счет событий. Просчеты счетных устройств.		
	Выбор оптимального мертвого времени. Счетчики и		
	регистры, методы уменьшения просчетов. Аналоговые и		
	цифровые измерители скорости счета.		
3 - 4	Спектрометрический тракт		
J - 4	Спектрометрический тракт		
	детекторов. Основные характеристики линейных		
	импульсных усилителей. Шумы усилителей и методы		
	оптимизации отношения сигнала к шуму.		
	Факторы, влияющие на конечное энергетическое		
	разрешение спектрометрического тракта. Наложение		
	импульсо, частотные и амплитудные перегрузки.		
	Оптимальное формирование сигнала. Усилители		
	напряжения, тока, зарядочувствительные усилители.		
5	Методы амплитудной дискриминации		
	Методы амплитудной дискриминации и селекции.		
	Линейные схемы пропускания		
6 - 7	Амплитудный анализ		
	Структура амплитудного анализатора. Методы работы "по		
	живому времени". Методы кодирования амплитуд		
	импульсов (амплитудно-цифровые преобразователи)		
8	Временной анализ		
	Методы временного анализа и временной селекции.		
	Методы формирования точной временной отметки.		
	Особенности формирования временной отметки для		
	детекторов различных типов. Временное разрешение		
	различных типов детекторов		
9 - 10	Методы совпадений и антисовпадений		
	Основные параметры схем совпадений. Выбор		
	оптимального разрешающего времени. Классификация и		
	конструктивные особенности схем совпадений.		
	Мажоритарные схемы совпадений. Особенности метода и		
	схем совпадений.		
11	Методы кодирования временных интервалов		
	Методы временного анализа. Методв аналогового		
	преобразования и кодирования временных интервалов.		
	Метод времени пролета. Методы время-координатной		
	компенсации		
12	Многопараметровый анализ		
	Особенности кодирования информации в		
	многодетекторных системах		
13	Дискриминация частиц по форме импульса		
-	Методы дискриминации частиц по форме импульса		
	детектора. п-гамма разделение		
14 - 15	Системы сбора информации в многодетекторных		
17 - 13	спетемы соора информации в многодетскторных		

	системах	
	Системы сбора и обработки информации в	
	многодетекторных системах. Триггер эксперимента	
16	Современные стандарты ядерной электроники	
	Система NIM, ситема КАМАК и другие	

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекции, практические занятия и лабораторные работы с возможностью закрепления полученных навыков

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-10	3-ПК-10	КИ-16
	У-ПК-10	КИ-16
	В-ПК-10	КИ-16
ПК-3.2	3-ПК-3.2	Э, КИ-8
	У-ПК-3.2	Э, КИ-8
	В-ПК-3.2	Э, КИ-8
ПК-3.4	3-ПК-3.4	Э, КИ-8
	У-ПК-3.4	КИ-8
	В-ПК-3.4	Э, КИ-8

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в

			ответе материал монографической
			литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
			материал, грамотно и по существу
70.74		D	излагает его, не допуская
70-74			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60			существенные ошибки. Как правило,
пиже оо			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ В 57 Физическая электроника. Эмиссия и взаимодействие частиц с твердым телом : учебное пособие, Санкт-Петербург: Лань, 2021
- 2. ЭИ Э 41 Экспериментальная ядерная физика. В 3 томах Т. 2 Физика элементарных частиц, : , 2021
- 3. 539.1 Б 27 Электронные методы съема, отбора и регистрации данных ядерно-физического эксперимента : учебно-метод. пособие, Москва: КДУ, 2016
- 4. 621.38 Г12 Основы ядерной электроники Ч.1, Москва: НИЯУ МИФИ, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

- 1. Общие положения
- 1.1. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий, лабораторных работ и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
- 1.2. Приступая к изучению дисциплины студенту необходимо ознакомиться с целями и задачами дисциплины, содержанием рабочей программы дисциплины, рекомендуемыми литературными источниками, методическими разработками по данной дисциплине, имеющимися на образовательном портале и сайте кафедры.
 - 2. Рекомендации по подготовке к лекционным занятиям.
- 2.1. Изучение дисциплины требует систематического и последовательного накопления знаний, следовательно, пропуски отдельных тем не позволяют глубоко освоить предмет. Поэтому студентам, пропустившим занятия, необходимо самостоятельно проработать тему.
- 2.2. Для понимания материала учебной дисциплины и качественного его усвоения рекомендуется вести конспект лекций. Конспектирование представляет собой сжатое и свободное изложение наиболее важных, кардинальных вопросов темы, излагаемой в лекции.
- 2.3. Перед очередной лекцией следует просмотреть по конспекту материал предыдущей лекции и прорабатывать учебный материал лекции по учебнику и учебным пособиям для успешного освоения материала.
- 2.4. Возникающие вопросы и непонятные моменты можно записывать в конспект, чтобы спросить о них у преподавателя на лекции.
 - 3. Рекомендации по подготовке к практическим занятиям.
- 3.1. Практические занятия служат для закрепления изученного теоретического материала. Подготовка к практическому занятию включает в себя текущую работу над учебными материалами с использованием конспектов и рекомендуемой основной и дополнительной литературы.
- 3.2. При подготовке к практическим занятиям следует проработать теоретический материал по рекомендованным литературным источникам, внимательно прочитать материал лекций, относящихся к данному практическому занятию.
- 3.3. В ходе практических занятий давать конкретные, четкие ответы по существу вопросов, доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.
 - 4. Рекомендации по подготовке и выполнению лабораторных работ.

- 4.1. Лабораторные работы это один из основных видов учебных занятий, направленный на экспериментальное подтверждение теоретических положений. Обучающиеся самостоятельно выполняют задания под контролем преподавателя в соответствии с изучаемым содержанием учебного материала. Обучающимся рекомендуется ознакомиться с графиком выполнения лабораторных работ согласно календарному плану дисциплины.
- 4.2. Перед выполнением лабораторной работы следует самостоятельно изучить теоретическую часть работы, используя лабораторный практикум, подготовить ответы на контрольные вопросы.
- 4.3. Перед выполнением каждой работы предшествует проверка готовности к лабораторной работе (см. п.4.2), которая производится преподавателем.

Студент должен:

- знать ответы на контрольные вопросы для проверки теоретических знаний, умений и навыков до выполнения работы (контрольные вопросы прилагаются);
- самостоятельно изучить методические указания по проведению конкретной лабораторной работы;
 - подготовить форму отчета;
 - уметь составлять структурную схему измерений;
- быть готовым продемонстрировать изображение предполагаемого хода кривых, которые будут сниматься в работе,....

По итогам проверки преподаватель принимает решение о допуске студента к выполнению лабораторной работы.

- 4.4. Перед выполнением лабораторной работы студент проходит инструктаж по технике безопасности (при необходимости).
- 4.5. В процессе лабораторной работы четко следовать инструкциям и указаниям преподавателя или дежурного лаборанта, не приступать к выполнению работы без разрешения; руководствоваться правилами техники безопасности и мерами предосторожности, указанными в описаниях; фиксировать в лабораторном журнале результаты измерений для последующей их обработки. По завершению работы привести рабочее место в порядок и сдать лабораторный стенд преподавателю или дежурному лаборанту.
- 4.6. Выполнение работы заканчивается составлением краткого отчета, в котором следует указать: что и каким методом исследовалось или определялось; какой результат и с какими погрешностями (абсолютными и относительными) был получен; краткое обсуждение полученных результатов. Защитить результаты лабораторной работы следует до начала следующей по расписанию работы. Не рекомендуется иметь более одной не сданной работы перед началом следующей работы.
 - 5. Самостоятельная работа обучающихся
- 5.1. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 5.2. Обучающимся следует руководствоваться графиком самостоятельной работы, определенным рабочим планом дисциплины и выполнять все плановые задания, выдаваемые преподавателем для самостоятельной работы, и представлять их в установленный срок.
 - 6. Рекомендации по подготовке и сдаче аттестации по дисциплине.

- 6.1. Аттестация по дисциплине основана на балльно-рейтинговой системе, которая включает текущий контроль успеваемости, рубежный контроль в семестре и промежуточную аттестацию по итогам освоения дисциплины.
- 6.2. Текущий контроль подразумевает проверку готовности студентов к занятиям, для чего могут быть использованы различные проверочные задания. Прохождение контрольных рубежей проводится в середине и в конце семестра и может осуществляться в виде контрольных работ, письменных опросов и т.д. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает сдачу экзамена и курсового проекта. При подготовке к промежуточной аттестации необходимо по рекомендованным литературным источникам проработать теоретический материал и внимательно изучить материал лекций, соответствующий вопросам, выносимым на аттестацию.
- 6.3. Темы курсового проекта выдает преподаватель. Курсовой проект выполняется студентами самостоятельно и сдается в конце курса.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

- 1. Обшие положения
- 1.1. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий, лабораторных работ и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.2. На первом занятии преподаватель:
- знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;
- уточняет наполнение лекций и планы практических (семинарских, лабораторных) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;
- рекомендует основную и дополнительную литературу для успешного освоения дисциплины;
 - доводит до сведения студентов систему оценки знаний.
 - 2. Рекомендации по подготовке и преподаванию дисциплины
 - 2.1. Рекомендации по подготовке и проведению лекций:
- 2.1.1. Цель лекции организация целенаправленной познавательной деятельности студентов по овладению программным материалом учебной дисциплины. При этом лекционный материал рекомендуется постоянно актуализировать (вносить замечания, дополнения, пояснения и т.д.).
- 2.1.2. К типичным структурным элементам лекции относятся: вступление, основная часть, заключение. В начале лекции преподаватель называет тему лекции, основные вопросы, выносимые на лекцию, указывает основную и дополнительную литературу и главы и параграфы в ней, где изложен материал лекции. После каждого раздела делаются обобщающие выводы и даются указания по самостоятельной работе над материалом лекции.
- 2.1.3. Рекомендуется максимально использовать наглядные пособия и технические средства обучения. Для этого разрабатываются презентации. Каждый слайд должен содержать основные положения и сопровождаться дополнительными примерами и пояснениями преподавателя.
 - 2.2. Рекомендации по подготовке и проведению практических (семинарских) занятий:

- 2.2.1. Цель практических (семинарских) занятий предоставление возможностей для углубленного изучения теории, овладения практическими навыками и выработки самостоятельного творческого мышления у студентов. На каждом таком занятии обучающиеся решают практические задачи и демонстрируют результаты выполнения домашнего задания, выданного на предыдущем занятии.
- 2.2.2. Для максимального усвоения дисциплины рекомендуется выполнение расчетнографических работ студентов по материалам лекций и практических работ. Подборка заданий осуществляется на основе изученного теоретического материала. Такой подход позволяет повысить мотивацию студентов при конспектировании лекционного материала.
 - 2.3. Рекомендации по организации руководства самостоятельной работой студентов
- 2.3.1. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 2.3.2. В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем.
 - 2.4. Рекомендации по подготовке и проведению лабораторных работ.
- 2.4.1. Лабораторная (практическая) работа это такой метод обучения, при котором обучающиеся под руководством преподавателя и по заранее намеченному плану проделывают опыты или выполняют определенные практические задания и в процессе их воспринимают и осмысливают новый учебный материал.
- 2.4.2. Перед выполнением каждой работы предшествует проверка готовности к лабораторной работе (см. п.2.4.1.), которая производится преподавателем.

Преподаватель оценивает уровень подготовки студентов по следующим ключевым критериям:

- подготовка ответов на контрольные вопросы для проверки теоретических знаний, умений и навыков до выполнения работы (контрольные вопросы прилагаются);
- самостоятельное изучение методических указаний по проведению конкретной лабораторной работы;
 - подготовка формы отчета;

Допускается также введение других вопросов:

- составление структурной схемы измерений;
- изображение предполагаемого хода кривых, которые будут сниматься в работе,....

По итогам проверки преподаватель принимает решение о допуске студента к выполнению лабораторной работы и проводит для студентов инструктаж по технике безопасности (при необходимости).

- 2.4.3. Проведение лабораторных работ включает в себя следующие методические приемы:
 - постановку темы занятий и определение задач лабораторно-практической работы;
 - определение порядка лабораторно-практической работы или отдельных ее этапов;
- непосредственное выполнение лабораторно-практической работы учащимися и контроль преподавателя за ходом занятий и соблюдением техники безопасности;
- подведение итогов лабораторно-практической работы и формулирование основных выводов.

- 2.4.4. Преподаватель проверяет результаты выполнения лабораторной работы, оформленной учащимися в виде отчета, форма и содержание которого определяются соответствующими рекомендациями, приведенными в лабораторном практикуме дисциплины.
- 2.4.5. Оценки за выполнение лабораторной работы являются показателями текущей успеваемости учащихся по учебной дисциплине.
 - 2.5. Рекомендации по осуществлению контроля знаний обучаемых
- 2.5.1. По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 2.5.2. По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и промежуточная аттестация.
- 2.5.3. Текущий контроль подразумевает проверку готовности студентов к лекционным, семинарским, лабораторным и практическим занятиям, могут быть использованы различные проверочные задания.
- 2.5.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и в конце семестра.
- 2.5.5. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает приём экзамена и самостоятельную подготовку к нему.
- 2.5.6. Темы курсового проекта выдает преподаватель. Курсовой проект выполняется студентами самостоятельно и преподаватель принимает сдачу курсового проекта в конце семестра.

Автор(ы):

Архангельский Андрей Игоревич

Колесников Святослав Владимирович, к.ф.-м.н., доцент