Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 2

от 26.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ГЕТЕРОСТРУКТУРНАЯ ОПТОЭЛЕКТРОНИКА

Направление подготовки (специальность)

[1] 12.03.03 Фотоника и оптоинформатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	32	16	0		24	0	Э
Итого	3	108	32	16	0	0	24	0	

АННОТАЦИЯ

Цель дисциплины- обеспечить формирование фундаментальных и практических компетенций в области физических принципов работы, характерных конструкций, основных свойств основных устройств и приборов твердотельной оптоэлектроники на основе полупроводниковых наногетероструктур. Курс базируется на знании физической оптики, физики твердого тела и полупроводников, оптики полупроводниковых нано- и гетероструктур, твердотельной фотонике. Студенты знакомятся с основными физическими эффектами в области оптики полупроводниковых структур, принципами создания и конструкциями основных приборов оптоэлектроники для генерации, преобразования и детектирования оптического излучения. Обсуждаются элементы слоевых конструкций и топологий, основные свойства и особенности использования. Однако, технология создания данных типов приборов не рассматривается в данном курсе, а выделена в отдельную дисциплину - Технологические основы фотоники. В результате студенты овладевают фундаментальным и практическим базисом, владеют современным уровнем развития оптоэлектроники.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель дисциплины:

обеспечить формирование фундаментальных и практических компетенций в области современных принципов и подходов, применяемых для формирования твердотельной оптоэлектроники на основе полупроводниковых наногетероструктур. Изучение основных принципов взаимодействия излучения с полупроводниковыми структурами, основ преобразования и детектирования оптического излучения, формирования когерентного излучения или широкополосного, модуляция света СВЧ электрическим сигналом. Изучаются принципы волоконно-оптических систем для передачи цифровой информации, подходы радиофотоники для генерации и преобразования аналоговых сигналов. Данная дисциплина формирует фундаментальный базис для бакалавров, позволяя им полностью овладеть терминологией и основными понятиями в области гетероструктурной твердотельной оптоэлектроники. Однако, курс не дает специальных компетенций, достаточных для конструкторских компетенций, поскольку они относятся к уровню образования магистров. Отдельные фундаментальные вопросы не включены в курс, например, эффекты нелинейной оптики, плазмонные явления, оптика метаматериалов, поскольку данные вопросы предполагаются к изучению в курсе Фотоника.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина связана с курсами, формирующими фундаментальные компетенции – Технологии эпитаксии для материалов фотоники, Технологические основы фотоники

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследовательской	·	
Анализ поставленной задачи исследований в области фотоники и оптоинформатики на основе подбора и изучения литературных и патентных источников	элементная база, системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики элементная база полупроводниковых, волоконных и планарных лазеров элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации элементная база и системы преобразования и отображения информации элементная база и системы на основе наноразмерных и фотоннокристаллических структур системы оптических и квантовых вычислений и оптические компьютеры оптические системы искусственного интеллекта устройства и системы компьютерной фотоники	ПК-1 [1] - способен к анализу поставленной задачи исследований в области фотоники и оптоинформатики Основание: Профессиональный стандарт: 40.011	3-ПК-1[1] - Знать современное состояние развития фотоники и оптоинформатики; У-ПК-1[1] - уметь анализировать исходные требования при решении задач в области фотоники и оптоинформатики проводить поиск научнотехнической информации по теме решаемой задачи уточнять и корректировать требования к решаемой задаче в области фотоники и оптоинформатики; В-ПК-1[1] - Владеть навыками анализа простых исследовательских задач в области фотоники и оптоинформатики;
Анализ поставленной задачи исследований в области фотоники и оптоинформатики на основе подбора и	элементная база, системы и технологии интегральной, волоконной и градиентной оптики, а	ПК-5.1 [1] - Способен применять современные фундаментальные знания из областей	3-ПК-5.1[1] - Знать фундаментальные основы физики конденсированного состояния, физики
изучения литературных и патентных источников	также микрооптики; элементная база полупроводниковых, волоконных и планарных	физики конденсированного состояния, физики полупроводников и	полупроводников и физики наносистем в объеме программы

лазеров; элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации; элементная база и системы преобразования и отображения информации; элементная база и системы на основе наноразмерных и фотоннокристаллических структур; системы оптических и квантовых вычислений и оптические компьютеры; оптические системы искусственного интеллекта; устройства и системы компьютерной фотоники

физики наносистем для анализа принципов функционирования радиофотонных и электронно-оптических устройств

Основание: Профессиональный стандарт: 40.011

академического бакалавриата, необходимые для анализа принципов функционирования радиофотонных и электроннооптических устройств: У-ПК-5.1[1] - Уметь применять полученные знания, а также проводить научный поиск актуальных опубликованных результатов и последних достижений в области радиофотонных технологий и систем: В-ПК-5.1[1] -Владеть навыками анализа и синтеза устройств радиофотоники с целью выделить их наиболее существенные электронные, оптические и иные функциональные характеристики, и сделать вывод о влияющих на них физических процессах

Выполнение математического (компьютерного) моделирования с целью анализа и оптимизации параметров объектов фотоники и оптоинформатики на базе имеющихся средств исследований и проектирования,

проектно-конструкторский элементная база, системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики элементная база полупроводниковых, волоконных и планарных лазеров элементная база, системы, материалы, методы и технологии,

ПК-4 [1] - способен к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях;

3-ПК-4[1] - Знать основные правила разработки проектной и рабочей технической документации, правила оформления конструкторской документации принципы и методы

включая стандартные пакеты автоматизированного проектирования и моделирования

обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации элементная база и системы преобразования и отображения информации элементная база и системы на основе наноразмерных и фотоннокристаллических структур системы оптических и квантовых вычислений и оптические компьютеры оптические системы искусственного интеллекта устройства и системы компьютерной фотоники

Основание: Профессиональный стандарт: 29.004 расчета и проектирования деталей и узлов приборов и установок в соответствии с техническим заданием.; У-ПК-4[1] - Уметь анализировать технические требования, предъявляемые к разрабатываемым узлам и элементам рассчитывать и проектировать детали и узлы приборов и установок, разрабатывать проекты технических описаний установок и приборов, проводить концептуальную и проектную проработку типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях ; В-ПК-4[1] - Владеть методами анализа и расчета, навыками конструирования и проектирования в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях, методами расчета и проектирования деталей и узлов приборов и

Разработка отдельных блоков программ, их отладка и настройка для решения задач фотоники и оптоинформатики, включая типовые задачи проектирования, исследования и контроля элементов, устройств и систем фотоники и оптоинформатики

элементная база, системы и технологии интегральной, волоконной и градиентной оптики, а также микрооптики элементная база полупроводниковых, волоконных и планарных лазеров элементная база, системы, материалы, методы и технологии, обеспечивающие оптическую передачу, прием, обработку, запись и хранение информации элементная база и системы преобразования и отображения информации элементная база и системы на основе наноразмерных и фотоннокристаллических структур системы оптических и квантовых вычислений и оптические компьютеры оптические системы искусственного интеллекта устройства и системы компьютерной фотоники

ПК-6 [1] - способен проводить поверку, наладку и регулировку оборудования, настройку программных средств, используемых для разработки, производства и настройки приборной техники

Основание: Профессиональный стандарт: 29.004 установок с использованием стандартных средств автоматизации 3-ПК-6[1] - Знать общие принципы, правила и методы поверки, наладки и регулировки оборудования, настройки программных средств; У-ПК-6[1] - Уметь подготавливать испытательное оборудование и измерительную аппаратуру, выбрать метод поверки, наладки и регулировки оборудования, настройки программных средств; В-ПК-6[1] - Владеть навыками тестирования оборудования, настройки программных средств

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного

		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных открытий
		и теорий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала профильных
Восинтание	формирование ответственности	дисциплин «Введение в
	и аккуратности в работе с	специальность», «Введение в
	опасными веществами и при	технику физического
	требованиях к нормам высокого	эксперимента», «Измерения в
	класса чистоты (В35)	микро- и наноэлектронике»,
	Landon Motorbi (Doo)	«Информационные технологии в
		физических исследованиях»,
		«Экспериментальная учебно-
		исследовательская работа» для: -
		формирования навыков
		безусловного выполнения всех
L	I	1 003 y 0.110 DILLO III DILLO III DECA

норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: формирования профессиональной коммуникации в научной среде; формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности - формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях

постоянного соответствия
требованиям к эффективным и
прогрессивным специалистом для
разработок новых материалов и
устройств по направлениям,
связанным с СВЧ электроникой,
микро- и нанопроцессорами,
оптическими модуляторами и
применением новых материалов в
наноэлектронных компонентах
через организацию практикумов в
организациях по разработке и
производству полупроводниковых
изделий, использование методов
коллективных форм
познавательной деятельности,
ролевых заданий, командного
выполнения учебных заданий и
защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	7 Семестр						
1	Первый раздел	1-8	16/8/0		25	КИ-8	3-ПК- 1, y- ПК-1, B- ПК-1, 3-ПК- 4, y- ПК-4, B- ПК-4, 3-ПК- 5.1, y- ПК-

						5.1,
						В- ПК-
						5.1,
						3-ПК-
						6, y-
						ПК-6,
						B-
2	Второй раздел	9-16	16/8/0	25	КИ-15	ПК-6 3-ПК-
	Второн раздел	7 10	10/0/0	25		1,
						У-
						ПК-1, В-
						ПК-1,
						3-ПК-
						4, У-
						ПК-4,
						B-
						ПК-4, 3-ПК-
						5-11K- 5.1,
						У-
						ПК- 5.1,
						B-
						ПК-
						5.1,
						3-ПК- 6,
						У-
						ПК-6,
						В- ПК-6
	Итого за 7 Семестр		32/16/0	50		
	Контрольные			50	Э	3-∏K-
	мероприятия за 7 Семестр					5.1, y-
						ПК-
						5.1,
						В- ПК-
						5.1,
						3-ПК-
						6, y-
						ПК-6,
						В-
	*					ПК-6

^{* –} сокращенное наименование формы контроля

** – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование			
чение				
КИ	Контроль по итогам			
Э	Экзамен			

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	7 Семестр	32	16	0
1-8	Первый раздел	16	8	0
	Основы оптики полупроводников	Всего а	аудиторных	часов
	Оптические явления в полупроводниках. Прямозонные и	2	1	0
	непрямозонные полупроводники. Фотогенерация и	Онлайі	H	
	рекомбинация неравновесных носителей тока. Виды	0	0	0
	рекомбинации. Экситоны.			
	Фундаментальные эффекты в оптоэлектронике.	Всего а	аудиторных	часов
	Взаимодействие излучения с твердым телом. Собственное	2	1	0
	поглощение. Примесное поглощение. Поглощение света в	Онлайі	H	
	различных материалах. Фотопроводимость. Релаксация	0	0	0
	неравновесных носителей тока.			
	Фундаментальные эффекты в оптоэлектронике.	Всего а	аудиторных	часов
	Фотолюминесценция. Закон Варшни. Эффект Поккельса.	2	1	0
	Эффект Керра.		Онлайн	
		0	0	0
	Фундаментальные эффекты в оптоэлектронике.	Всего аудиторных часов		
	Поглощение свободными носителями тока. Эффект	2	1	0
	Франца-Келдыша. Квантовый эффект Штарка.	Онлай	Н	
		0	0	0
	Генерация излучения	Всего а	аудиторных	часов
	Лазерная генерация. Механизмы усиления и когерентности	2	1	0
	излучения в распределенной среде. Ширина спектральной	Онлайі	H	
	линии. Обзор лазерных источников излучения (газовый, на	0	0	0
	красителях, Ті-сапфировый).			
	Инжекционные приборы для генерации излучения	Всего а	аудиторных	часов
	Инжекция неравновесных носителей тока в	2	1	0
	гетероструктурах. Pin- диод. Квантовая яма. Светодиод на	Онлай	Н	
	основе гетероструктур.	0	0	0
	Полупроводниковые лазеры	Всего а	аудиторных	часов
	Инжекционные Лазеры на основе гетероструктур с	2	1	0
	квантовой ямой. Лазеры на квантовых точках. Лазеры с	Онлайі	H	
	раздельным электронным и оптическим пространственным	0	0	0
	ограничением. Порог генерации. Вертикально-излучающий			
	лазер.			
	Спектральные и временные параметры источников.	Всего а	аудиторных	часов

		1		
	Суперлюминесцентные источники. Импульсные лазерные	2	1	0
	источники. Перестраиваемые лазеры. Ограничения	Онлайн	I	
	быстродействия лазеров с прямой модуляцией.	0	0	0
9-16	Второй раздел	16	8	0
	Модуляция излучения	Всего а	удиторных	к часов
	Модуляция оптического излучения. Электрооптический	2	1	0
	эффект в АЗВ5 полупроводниках и сверхрешетках.	Онлайн	Ŧ	
	Электрооптический модулятор.	0	0	0
	СВЧ оптические модуляторы	Всего а	удиторных	часов
	Абсорбционный модулятор. Частотные параметры	2	1	0
	модуляторов. Спектральная дисперсия параметров	Онлайн	Ŧ	
	модулятора. Чирп.	0	0	0
	Детектирование излучения	Всего а	удиторных	часов
	Фотодетекторы. Обзор принципов различных типов	2	1	0
	детекторов – фотосопротивление, болометр, фотодиод,	Онлайн	H	
	фотоумножитель. Спектральные характеристики,	0	0	0
	чувствительность.			
	Фотодиоды	Всего а	удиторных	к часов
	Фотодиоды. Спектральный диапазон, линейность. Мощные	2	1	0
	фотодиоды. Однофотонные детекторы. Твердотельные	Онлайн	I	
	лавинные фотоумножители.	0	0	0
	Фотовольтаические преобразователи	Всего а	удиторных	часов (
	Фотоэлементы на основе кремниевых структур.	2	1	0
	Фотовольтаические элементы на основе каскадных	Онлайн	Ŧ	
	гетероструктур на квантовых ямах. Вольтамперные и ватт-	0	0	0
	амперные характеристики. Концентраторные панели.			
	Волоконно-оптические линии связи	Всего а	удиторных	часов
	Волоконно-оптические линии связи. Принцип передачи,	3	1	0
	распространения и приема информации в ВОЛС.	Онлайн	H	_
	Спектральный принцип многоканальных систем.	0	0	0
	Обработка цифровых данных методами микроволновой			
	фотоники.			
	Микроволновая фотоника для обработки данных		удиторных	
	Функциональные подходы для генерации, преобразования	3	2	0
	СВЧ сигналов методами инфракрасной фотоники.	Онлайн	I	
	Принцип построения радиофотонных систем. Генератор	0	0	0
	СВЧ. Оптическое гетеродинирование. Формирование			
	пучков радиофотонными методами.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Использование в обучении активных и интерактивных форм рбучения с применением LMS, электронных ресурсов и информационных технологий, а также самоподготовка, консультирование преподавателем, работа с зарубежной и отечественной литературой по тематике курса.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ПК-1	3-ПК-1	КИ-8, КИ-15
	В-ПК-1	КИ-8, КИ-15
	У-ПК-1	КИ-8, КИ-15
ПК-4	3-ПК-4	КИ-8, КИ-15
	У-ПК-4	КИ-8, КИ-15
	В-ПК-4	КИ-8, КИ-15
ПК-6	3-ПК-6	Э, КИ-8, КИ-15
	В-ПК-6	Э, КИ-8, КИ-15
	У-ПК-6	Э, КИ-8, КИ-15
ПК-5.1	3-ПК-5.1	Э, КИ-8, КИ-15
	У-ПК-5.1	Э, КИ-8, КИ-15
	В-ПК-5.1	Э, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать

			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
73-04			материал, грамотно и по существу
70-74		D	излагает его, не допуская
			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
60-64		Е	выставляется студенту, если он имеет
			знания только основного материала,
	3 — «удовлетворительно»		но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
Ниже 60			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ С 43 Волоконно-оптические сети и системы связи: , Санкт-Петербург: Лань, 2022
- 2. ЭИ К 44 Квантовая и оптическая электроника: , Санкт-Петербург: Лань, 2022
- 3. ЭИ И 26 Оптоэлектроника и нанофотоника: учебное пособие, Санкт-Петербург: Лань, 2020

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 539.2 В19 Учебно-методический комплекс "Физика и технология молекулярно-лучевой эпитаксии" : , Москва: НИЯУ МИФИ, 2010

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

оптоэлектроника" призван обеспечить "Гетероструктурная формирование фундаментальных и практических компетенций в области физических принципов работы, характерных конструкций, основных компонент твердотельной оптоэлектроники на основе полупроводниковых наногетероструктур. В курсе основное внимание уделяется физическим явлениям, происходящим с оптической подсистемой рассматриваемых компонент, в первую очередь, на основе полупроводниковых структур, а также функциональному назначению конструкций компонентной базы. Вопросы технология создания данных типов приборов не рассматривается в данном курсе, а выделены в отдельную дисциплину - Технологические основы фотоники. В результате студенты овладевают фундаментальным и практическим базисом, владеют современным уровнем развития оптоэлектроники. с использованием как электрических, так и оптических подсистем компонент. Излагаются физические эффекты, принципы работы и конструктивные особенности основных типов оптоэлектронных приборов. Приводятся физические и технические характеристики таких устройств, рассматриваются вопросы их применения в системах обработки информации. Большое внимание уделяется современному состоянию элементной базы оптоэлектроники и тенденциям ее развития, базирующимся на нанотехнологиях.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

"Гетероструктурная оптоэлектроника" призван обеспечить формирование фундаментальных и практических компетенций в области физических принципов работы, характерных конструкций, основных компонент твердотельной оптоэлектроники на основе полупроводниковых наногетероструктур. В курсе следует уделить основное внимание физическим явлениям, происходящим с оптической подсистемой рассматриваемых компонент, в первую очередь, на основе полупроводниковых структур. Вопросы технология создания данных типов приборов не рассматривается в данном курсе, а выделены в отдельную дисциплину - Технологические основы фотоники. В результате студенты овладевают фундаментальным и практическим базисом, владеют современным уровнем развития оптоэлектроники. с использованием как электрических, так и оптических подсистем компонент. Излагаются физические эффекты, принципы работы и конструктивные особенности основных типов оптоэлектронных приборов. Приводятся физические и технические характеристики таких устройств, рассматриваются вопросы их применения в системах обработки информации. Большое внимание уделяется современному состоянию элементной базы оптоэлектроники и тенденциям ее развития, базирующимся на нанотехнологиях.

Автор(ы):

Васильевский Иван Сергеевич, к.ф.-м.н., доцент