Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА КОНСТРУИРОВАНИЯ ПРИБОРОВ И УСТАНОВОК

ОДОБРЕНО УМС ИФТИС

Протокол № 1

от 28.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИЗБРАННЫЕ ГЛАВЫ ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ

Направление подготовки (специальность)

[1] 15.03.06 Мехатроника и робототехника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
4	3	108	30	30	0		12	0	Э
Итого	3	108	30	30	0	0	12	0	

АННОТАЦИЯ

Курс «Избранные главы теоретической механики» предназначен для подготовки студентов любых специальностей. Является дисциплиной, которая позволяет освоить навык построения и исследования механико-математических моделей, адекватно описывающих разнообразные механические явления. Помимо этого, при изучении теоретической механики вырабатываются навыки практического использования методов, предназначенных для математического моделирования движения систем твёрдых тел.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель курса — изучение общих законов, которым подчиняются движение и равновесие материальных тел и возникающие при этом взаимодействия между телами, а также овладение основными алгоритмами исследования равновесия и движения механических систем. На данной основе становится возможным построение и исследование механико-математических моделей, адекватно описывающих разнообразные механические явления.

Основные задачи курса:

- сформулировать общие подходы к закономерностям механического движения для определения кинематических характеристик;
- научить студентов решать простейшие задачи на равновесие материальных объектов (материальной точки, абсолютно твердого тела, механической системы материальных точек и тел);
- дать представления об определении законов движения материальных объектов под действием приложенных силовых факторов;
 - научить студентов определять основные динамические характеристики движения.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Изучение дисциплины помогает профессиональному становлению современных выпускников в в области машиностроения и приборостроения.

Входными знаниями, умениями студента, необходимыми для изучения дисциплины, являются знания, сформированные у будущих студентов в результате освоения дисциплин «Математика (векторный анализ)», «Математика (аналитическая геометрия)», «Математика (обыкновенные дифференциальные уравнения)», «Физика (механика)» по основной образовательной программе высшего образования.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- приобретение умений использовать законы и методы теоретической механики как основы описания и расчетов механизмов и систем;
- приобретение навыков составления расчетных схем реальных систем и механизмов и решения соответствующих математических задач;
- формирование устойчивых навыков по применению фундаментальных положений теоретической механики при научном анализе ситуаций, с которыми выпускнику приходится сталкиваться в ходе создания новой техники и новых технологий.

Данная дисциплина кроме самостоятельного значения служит основой для изучения в дальнейшем учебных дисциплин: «Теория машин и механизмов», «Курсовой проект: основы

конструирования и САПР», «Основы проектирования киберфизических устройств и систем», выполнения учебной исследовательской работы, курсового и дипломного проектирования.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

у ниверсальные и(или) оощепр	эфессиональные компетенции.
Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
ОПК-1 [1] – Способен применять	3-ОПК-1 [1] – знать фундаментальные понятия,
естественнонаучные и	определения, положения, законы, теории и методы
общеинженерные знания, методы	общеинженерных наук, необходимые для решения задач
математического анализа и	профессиональной деятельности.
моделирования в	У-ОПК-1 [1] – уметь применять фундаментальные
профессиональной деятельности	понятия, положения, законы, теории и методы
	общеинженерных наук для решения задач
	профессиональной деятельности с учетом границ их
	применимости.
	В-ОПК-1 [1] – владеть навыками применения методами
	математи-че ского анализа и моделирования при
	рассмотрении задач профессиональной деятельности.
УКЕ-1 [1] – Способен использовать	3-УКЕ-1 [1] – знать: основные законы
знания естественнонаучных	естественнонаучных дисциплин, методы
дисциплин, применять методы	математического анализа и моделирования,
математического анализа и	теоретического и экспериментального исследования
моделирования, теоретического и	У-УКЕ-1 [1] – уметь: использовать математические
экспериментального исследования	методы в технических приложениях, рассчитывать
в поставленных задачах	основные числовые характеристики случайных величин,
	решать основные задачи математической статистики;
	решать типовые расчетные задачи
	В-УКЕ-1 [1] – владеть: методами математического
	анализа и моделирования; методами решения задач
	анализа и расчета характеристик физических систем,
	основными приемами обработки экспериментальных
	данных, методами работы с прикладными программными
	продуктами

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания	, ,	дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое

	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
	(210)	индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
П 1	Conserved	информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных
		бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок
		появления тех или иных открытий
		и теорий.
		и тоории.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	4 Семестр						
2	Первый раздел. Статика и кинематика. Второй раздел. Динамика.	9-15	16/16/0		25	T-15	3-OПК-1, У-ОПК-1, В-ОПК-1, 3-УКЕ-1, У-УКЕ-1, В-УКЕ-1 3-ОПК-1, У-ОПК-1,
	Hunga og 4 Carragun		30/30/0		50		В-ОПК-1, 3-УКЕ-1, У-УКЕ-1, В-УКЕ-1
	Итого за 4 Семестр		30/30/0		50	Э	2 ОПИ 1
	Контрольные мероприятия за 4 Семестр				30	J	3-ОПК-1, У-ОПК-1, В-ОПК-1, 3-УКЕ-1, У-УКЕ-1, В-УКЕ-1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание		Пр./сем.,	Лаб.,	
		час.	час.	час.	
	4 Семестр	30	30	0	
1-8	Первый раздел. Статика и кинематика.	16	16	0	
1	Основные понятия и аксиомы статики.		Всего аудиторных часов		
	Основные понятия и аксиомы статики. Система	2	2	0	
	сходящихся сил. Момент силы относительно точки и оси.		I		
	Условия равновесия пространственной и плоской системы	0	0	0	
	сходящихся сил в аналитической форме. Теорема о				
	равновесии трех непараллельных сил. Связь момента силы				

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	относительно оси с вектором момента силы относительно					
	точки на оси.					
2	Пары сил.	Всего	аулиторі	ных часов		
_	Приведение произвольной системы сил к данному центру.	2	Всего аудиторных часов 2 2 0			
	Лемма о параллельном переносе силы. Система сил,	Онлай				
	произвольно расположенных на плоскости. Реакция	0	0	0		
	жесткой заделки. Равновесие плоской системы сил:					
	введение, определение реакций опор, вычерчивание					
	схемы, указание реакций, составление уравнений					
	равновесия и их решение.					
3	Трение.	Всего	аудиторі	ных часов		
	Законы трения скольжения. Угол и конус трения. Область	2	2	0		
	равновесия. Понятие о трении качения. Равновесие	Онлай	iH			
	пространственной системы сил: определение реакций опор	0	0	0		
	одного тела в случае пространственной системы сил,					
	вычерчивание схемы, указание реакций, составление					
	уравнений равновесия.					
4	Центр тяжести твердого тела	Всего	аудиторі	ных часов		
	Центр тяжести твердого тела: формулы для определения	2	2	0		
	его координат. Координаты центров тяжести однородных	Онлай	ÍН	I		
	тел (центры тяжести объема, площади и линии). Способы	0	0	0		
	определения положения центра тяжести тел. Центры					
	тяжести площади треугольника, дуги окружности,					
	кругового сектора. Центр тяжести: определение					
	положения центра тяжести фигур (плоской, объемной,					
	состоящей из узлов линий): разбиение сложной фигуры на					
	простые, определение координат центров тяжести и					
	площадей (объемов, длин) простых фигур и вычисление					
	центров тяжести сложной фигуры.					
5	Пространство и время в классической механике и в	Всего	аудиторі	ных часов		
	теории относительности.	2	2	0		
	Система отсчета. Относительность движения и покоя.	Онлай	Н			
	Задачи кинематики. Векторный способ задания движения	0	0	0		
	точки. Координатный способ задания движения точки (в					
	прямоугольных декартовых координатах). Естественный					
	способ задания движения точки. Кинематика точки:					
	определение уравнений движения точки, траекторий,					
	скоростей и ускорений.					
6	Степени свободы твердого тела.	Всего		ных часов		
	Теорема о проекциях скоростей точек твердого тела.	2	2	0		
	Поступательное движение твердого тела. Теорема о	Онлай	ін			
	траекториях, скоростях и ускорениях точек твердого тела	0	0	0		
	при поступательном движении. Вращение твердого тела					
	вокруг неподвижной оси. Уравнение вращательного					
	движения твердого тела. Угловая скорость и угловое					
	ускорение тела. Равномерное и равнопеременное					
	вращения твердого тела.					
7	Определение плоского движения твердого тела.		аудиторі	ных часов		
	Уравнения движения. Разложение плоского движения	2	2	0		
	твердого тела на поступательное и вращательное	Онлай	ін			
	движения. Векторная зависимость между скоростями двух	0	0	0		
	точек тела при плоском движении. Мгновенный центр					

		1		
	скоростей. Вращение твердого тела вокруг неподвижной			
	оси: по заданному уравнению движения тела определить			
	угловую скорость и угловое ускорение, линейные			
	скорости и ускорения точек.			
8	Абсолютное, относительное и переносное движение	Всего а	удиторны	
	точки.	2	2	0
	Теорема о сложении скоростей. Теорема Кориолиса о	Онлайі	Ŧ	
	сложении ускорений. Ускорение Кориолиса. Сложение	0	0	0
	поступательных и вращательных движений, пара			
	вращений. Скорости и ускорения точек тела в плоском			
	движении: определение угловых скоростей и ускорений			
	звеньев, линейных скоростей и ускорений точек.			
9-15	Второй раздел. Динамика.	14	14	0
9	Основные понятия и определения в динамике.		удиторны	
	Аксиомы динамики (законы механики Галилея –	2	2	0
	Ньютона). Динамика материальной точки	Онлайі	H	
	Дифференциальные уравнения движения материальной	0	0	0
	точки в декартовых координатах. Естественные уравнения			1
	движения материальной точки. Относительное движение			
	материальной точки Дифференциальные уравнения			1
	относительного движения материальной точки.			
	Переносная и кориолисова силы инерции. Принцип			
	относительности классической механики. Динамика			
	точки: первая и вторая задачи динамики: по заданным			
	уравнениям движения точки определить силу,			
	действующую на точку и наоборот.			
10	Центр масс		удиторны:	
	Механическая система. Масса системы. Центр масс	2	2	0
	системы и его координаты. Классификация сил,	Онлайі	1	1
	действующих на механическую систему. Равенство нулю	0	0	0
	главного вектора и главного момента внутренних сил			
	механической системы. Моменты инерции системы			
	относительно полюса, оси и плоскости. Радиус инерции.			
11	Дифференциальные уравнения движения		удиторны:	
	механической системы.	2	2	0
	Теорема о движении центра масс. Дифференциальные	Онлайі		1 -
	уравнения поступательного движения твердого тела.	0	0	0
	Количество движения материальной точки и			
	механической системы. Элементарный и полный импульс			
	силы. Теоремы об изменении количества движения точки			
	и системы в дифференциальной и конечной формах.			
	Законы сохранения количества движения. Теорема об			
	изменении количества движения точки и системы: с			
	помощью теоремы определить скорость или пройденный			
10	путь тел, входящих в систему или точки.	D		
12	Момент количества движения материальной точки		удиторны:	
	относительно центра и оси.	2	2	0
	Теорема об изменении момента количества движения	Онлай		
	материальной точки. Теорема об изменении кинетического	0	0	0
		1	1	1
	момента и закон сохранения кинетического момента			
	момента и закон сохранения кинетического момента механической системы относительно центра и оси. Дифференциальное уравнение вращения твердого тела			

	вокруг неподвижной оси. Теорема о движении центра				
	масс: с помощью теоремы определить неизвестные				
	параметры системы.				
13	Элементарная работа силы.	Всего	аудиторі	ных часов	
	Работа силы на конечном перемещении. Мощность.	2	2	0	
	Работа силы тяжести, силы упругости и силы тяготения.	Онлаї	и́н		
	Кинетическая энергия точки и системы. Кинетическая	0	0	0	
	энергия твердого тела при поступательном, вращательном				
	и плоском движениях. Теоремы об изменении				
	кинетической энергии материальной точки и				
	механической системы в дифференциальной и конечной				
	формах. Теорема об изменении кинетического момента				
	точки и системы с помощью теоремы определить				
	неизвестные угловые скорости тел системы.				
14	Принцип Даламбера.	Всего	Всего аудиторных часов		
	Силы инерции материальной точки. Принцип Даламбера	2	2	0	
	для материальной точки и механической системы.	Онлаї	и ́Н		
	Приведение сил инерции механической системы к центру:	0	0	0	
	главный вектор и главный момент сил инерции.				
15	Аналитическая механика.	Всего	аудитор	ных часов	
	Связи и их классификация. Возможные перемещения.	2	2	0	
	Число степеней свободы. Идеальные связи. Принцип	Онлаї	и́н		
	возможных перемещений. Обобщенные координаты	0	0	0	
	системы. Обобщенные силы и способы их вычисления.				
	Общее уравнение динамики. Уравнения Лагранжа второго				
	рода. Теорема об изменении кинетической энергии точки				
	и системы: изобразить схему, силы, найти кинетическую				
	энергию системы и работу сил применив теорему				
	определить неизвестную величину.				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В учебном процессе используются активные и интерактивные формы проведения занятий с использованием телекоммуникационных технологий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных компетенций студентов. В рамках учебного курса предусмотрены встречи с представителями российских предприятий атомной отрасли. Самостоятельная работа студентов обеспечена учебными пособиями, курсом

лекций в электронном виде и возможностью коммуникации с преподавателем в социальных сетях.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ОПК-1	3-ОПК-1	Э, Т-8, Т-15
	У-ОПК-1	Э, Т-8, Т-15
	В-ОПК-1	Э, Т-8, Т-15
УКЕ-1	3-УКЕ-1	Э, Т-8, Т-15
	У-УКЕ-1	Э, Т-8, Т-15
	В-УКЕ-1	Э, Т-8, Т-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	1	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Студент обязан:

- 1. Посещать регулярно лекции и практические занятия, выполнять все текущие задания по изучаемой теме.
 - 2. Пройти аттестацию по всем разделам дисциплины.
 - 3. В конце семестра сдать экзамен по дисциплине.

Для аттестации по разделам и допуску к экзамену студенту необходимо получить не менее 60 баллов суммарно по всем разделам. Все практические работы должны быть выполнены студентом и защищены.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

• ознакомить студентов с историей и логикой развития теоретической механики;

- изучение механической компоненты современной естественнонаучной картины мира, понятий и законов теоретической механики;
- помочь студентам овладеть важнейшими методами решения научно-технических задач в области механики, основными алгоритмами математического моделирования механических явлений;
- помочь студентам овладеть методами и приёмами самостоятельного мышления при выборе математических моделей и расчетных схем для решения инженерных задач. навыками составления уравнений равновесия и движения материальных тел, применения аналитических и численных методов для их решения.
- проводить проверку знаний вопросы по теме с использованием контрольных задач, тестовых примеров.

Автор(ы):

Бирюков Александр Павлович