Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ БИОМЕДИЦИНЫ КАФЕДРА ЛАЗЕРНЫХ МИКРО- И НАНОТЕХНОЛОГИЙ

ОДОБРЕНО НТС ИФИБ

Протокол № 3.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА ТВЕРДОГО ТЕЛА ПРИМЕНИТЕЛЬНО К НАНОСТРУКТУРАМ

Направление подготовки (специальность)

[1] 03.04.02 Физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	5	180	16	32	8		88	0	Э
Итого	5	180	16	32	8	0	88	0	

АННОТАЦИЯ

Дисциплина "Физика твердого тела применительно к наноструктурам" относится к циклу профессиональных дисциплин и имеет своей целью:

- формирование у студентов представлений об основных понятиях и идеях физики твердого тела для применения этих знаний при работе с наноструктурами
- подготовка к самостоятельной научно-исследовательской и проектной работе в составе научных коллективов.

Задачи дисциплины:

- расширение научного кругозора и эрудиции студентов на базе изучения современных представлений о физике твердого тела и применения этих знаний при работе с наноструктурами

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина "Физика твердого тела применительно к наноструктурам" относится к циклу профессиональных дисциплин и имеет своей целью:

- формирование у студентов представлений об основных понятиях и идеях физики твердого тела для применения этих знаний при работе с наноструктурами
- подготовка к самостоятельной научно-исследовательской и проектной работе в составе научных коллективов.

Задачи дисциплины:

- расширение научного кругозора и эрудиции студентов на базе изучения современных представлений о физике твердого тела и применения этих знаний при работе с наноструктурами

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Данная дисциплина программы логически и содержательно-методически связана со следующими предшествующими дисциплинами: общая физика, теория поля, квантовая механика, физическая оптика, теория колебаний, атомная и молекулярная спекроскопия, физика конденсированных сред, разделы математики: дифференциальное и интегральное исчисления, теория рядов, уравнения математической физики, теория вероятностей. Освоение данной дисциплины имеет, во-первых, самостоятельное значение и является также основой для усвоения специальных курсов по физике конденсированных сред, в частности, разделов, связанных с изучением синтеза, исследования и разработки применения для различных нано- и микро- структур.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
УК-3 [1] – Способен	3-УК-3 [1] – Знать: методики формирования команд;
организовывать и руководить	методы эффективного руководства коллективами;
работой команды, вырабатывая	основные теории лидерства и стили руководства
командную стратегию для	У-УК-3 [1] – Уметь: разрабатывать план групповых и

достижения поставленной цели	организационных коммуникаций при подготовке и выполнении проекта; сформулировать задачи членам команды для достижения поставленной цели; разрабатывать командную стратегию; применять эффективные стили руководства командой для достижения поставленной цели В-УК-3 [1] — Владеть: умением анализировать, проектировать и организовывать межличностные, групповые и организационные коммуникации в команде для достижения поставленной цели; методами организации и управления коллективом
УК-6 [1] — Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	3-УК-6 [1] — Знать: методики самооценки, самоконтроля и саморазвития с использованием подходов здоровьесбережения У-УК-6 [1] — Уметь: решать задачи собственного личностного и профессионального развития, определять и реализовывать приоритеты совершенствования собственной деятельности; применять методики самооценки и самоконтроля; применять методики, позволяющие улучшить и сохранить здоровье в процессе жизнедеятельности В-УК-6 [1] — Владеть: технологиями и навыками управления своей познавательной деятельностью и ее совершенствования на основе самооценки, самоконтроля и принципов самообразования в течение всей жизни, в том числе с использованием здоровьесберегающих подходов и методик

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исс	следовательский	,
- выявление	физические	ПК-4.1 [1] - Способен	3-ПК-4.1[1] - Знать
актуальных проблем и	объекты и	применять на практике	законы и принципы
тенденций в области	системы	знания лазерной	физики твердого тела,
физики - работа с	различного	физики, физики	оптики,
научной литературой,	масштаба, уровня	полупроводников,	взаимодействия
в том числе с	организации,	оптики, физических	излучения с
использованием	физические	основ взаимодействия	веществом, квантовой
информационных	явления и	излучения с веществом	механики, лазерной
технологий,	процессы,	для качественного и	физики;
отслеживание	физические,	количественного	У-ПК-4.1[1] - Уметь
отечественных и	инженерно-	описания исследуемых	формулировать,
зарубежных работ в	физические,	объектов и явлений	выделять,

исследуемой области -	биофизические		анализировать
выбор методов,	технологии,	Основание:	исходные данные об
современной	методы, приборы,	Профессиональный	исследуемом объекте и
аппаратуры и	устройства	стандарт: 40.006,	явлении, исходя из
информационных	J	40.037, 40.039	законов и принципов
технологий для			физики твердого тела,
проведения			оптики,
исследования -			взаимодействия
проведение			излучения с
теоретических и			веществом, квантовой
экспериментальных			механики, лазерной
исследований			физики;
			В-ПК-4.1[1] - Владеть
			приемами и методами,
			используемыми в
			области физики
			твердого тела, оптики,
			взаимодействия
			излучения с
			веществом, квантовой
			механики, лазерной
			физики, для
			качественного и
			количественного
			описания исследуемых
			объектов и явлений

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	1 Семестр						
1	Введение, основы квантовомеханического представления	1-2	4/4/0	T-2 (10)	10	T-2	3-ПК-4.1, У-ПК-4.1, В-ПК-4.1, 3-УК-3, У-УК-3, В-УК-6, У-УК-6, В-УК-6
2	Зонная теория твердого тела	2-9	6/14/4	T-9 (15)	15	T-9	3-ПК-4.1, У-ПК-4.1, В-ПК-4.1, 3-УК-3,

	T						,
							У-УК-3,
							В-УК-3,
							3-УК-6,
							У-УК-6,
							В-УК-6
3	Наноструктуры	9-15	4/11/4	T-15	15	T-15	3-ПК-4.1,
				(15)			У-ПК-4.1,
							В-ПК-4.1,
							3-УК-3,
							У-УК-3,
							В-УК-3,
							3-УК-6,
							У-УК-6,
							В-УК-6
4	Квазичастицы в	15-	2/3/0	T-16	10	T-16	3-ПК-4.1,
	твердых телах и	16		(10)			У-ПК-4.1,
	наноструктурах						В-ПК-4.1,
							3-УК-3,
							У-УК-3,
							В-УК-3,
							3-УК-6,
							У-УК-6,
							В-УК-6
	Итого за 1 Семестр		16/32/8		50		
	Контрольные				50	Э	3-ПК-4.1,
	мероприятия за 1						У-ПК-4.1,
	Семестр						В-ПК-4.1,
							3-УК-3,
							У-УК-3,
							В-УК-3,
							3-УК-6,
							У-УК-6,
							В-УК-6

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	1 Семестр	16	32	8
1-2	Введение, основы квантовомеханического	4	4	0
	представления			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

1	Введение	Всего	аудиторн	ых часов
1	Предмет и структура курса. Основные понятия.	2	<u> </u>	0
	предмет и структура курса. Основные попитии.	Онлай	Ü	10
		0	0	0
1 - 2	Основы квантовомеханического представления	Ŭ	аудиторн	
1 - 2	Основы квантовомеханического представления.	2	<u>аудитори</u> 4	0
	Квантование. Уравнение Шредингера. Электрон в	Онлай		10
	потенциальной яме. Атом водорода. Молекулы.	Онлай	0	0
	Электронные, колебательные и вращательные состояния.	U	U	U
	Бозоны и фермионы. Волновая функция.			
2-9	Зонная теория твердого тела	6	14	4
2	Кристаллическая решетка и структура кристаллов		аудиторн	
2	Базис, вектор трансляции, решетка Бравэ, примитивная и	2	2	1
	элементарная ячейки, индексы Миллера. Типы	Онлай		1
	межатомных связей Вандерваальсово взаимодействие.	0	0	0
	Ковалентная связь. Ионная связь. Водородная связь.	0	U	U
	Металлическая связь. Классификация твердых тел по			
	типам связи. Обратная решетка. Зона Бриллюэна.			
2 - 8	Электрон в кристалле	Всего	аудиторн	LIY UACOR
2 0	Уравнение Шредингера для кристалла. Адиабатическое	2	8	2
	приближение. Одноэлектронное приближение и метод	Онлай		2
	самосогласованного поля.	0	0	0
	Волновая функция электрона в кристалле. Квазиимпульс	0	U	U
	электрона в кристалле. Зонная структура твердого тела.			
	Плотность электронных состояний. Проводимость.			
	Металлы, полупроводники диэлектрики. Методы			
	моделирования электронных состояний в кристаллах.			
	Функционал электронной плотности.			
8 - 9	Оптические свойства кристаллов	Всего	аудиторн	ых часов
	Спектроскопия оптического поглощения,	2	$\frac{1}{4}$	1
	фотолюминесценции и комбинационного рассеивания	Онлай	ih	
	света. Связь оптических свойств с зонной структурой	0	0	0
9-15	Наноструктуры	4	11	4
9	Классификация наноматериалов	-	аудиторн	ых часов
	Определение наноматериалов. Одно-, двух- и трехмерные	2	1	1
	наноматериалы. Особенности и примеры.	Онлай	H T	1
		0	0	0
9 - 15	Особенности зонной структуры наноматериалов		аудиторн	
, 10	Отличие зонной структуры наноматериалов от структуры	2	10	3
	идеальных кристаллов. Квантование волнового вектора	Онлай		
	наноматериалов. Зона Бриллюэна. Размерные эффекты.	0	0	0
	Графит, графен. Одностенные углеродные нанотрубки.			
	Модель складывания зоны. Плотность электронных			
	состояний наноматериалов. Оптические свойства			
	наноматериалов. Методы моделирования зонной			
	структуры наноматериалов. Метод сверхячейки.			
15-16	Квазичастицы в твердых телах и наноструктурах	2	3	0
15 - 16	Фононы	+-	аудиторн	
10	Квазичастицы. Причины использования. Отличие и	2	2	0
	схожесть с частицами. Общая модель колебаний атомов в	Онлай		
	кристаллической решетке. Фонон. Колебания одномерной	0	0	0
	RUMCIALIMITECKOM DELICIKE. POHOH. RUMCIAHMA OMIKAMEMICA			

	циклические граничные условия Борна-Кармана). Колебания одномерной двухатомной решетки. Акустические и оптические колебания. Колебания атомов трехмерной решетки (продольные и поперечные фононы, форма зоны Бриллюэна, температура Дебая). Энергия фононов. Особенности фононной структуры в			
	наноматериалах.			
16	Экситоны, плазмоны, поляритоны	Всего а	удиторных	часов
	Квазичастицы в твердых телах и наноструктурах.	0	1	0
	Экситоны в наноструктурах. Энергия экситонных	Онлайн	I	•
	состояний в наноструктурах сравнении с кристаллами.	0	0	0
	Необходимость учета экситонных состояний.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций (с визуализацией презентаций с использованием проектора, подключенного к компьютеру), практические занятия и лабораторные работы, позволяющие закрепить знания, полученные на лекциях и выработать умения, а также получить необходимый для приобретения компетенций опыт практической деятельности. Предусмотрена самостоятельная работа студентов, заключающаяся в выполнении домашних заданий, повторении ранее пройденного материала и подготовке к контрольным мероприятиям.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-4.1	3-ПК-4.1	Э, Т-2, Т-9, Т-15, Т-16
	У-ПК-4.1	Э, Т-2, Т-9, Т-15, Т-16
	В-ПК-4.1	Э, Т-2, Т-9, Т-15, Т-16

УК-3	3-УК-3	Э, Т-2, Т-9, Т-15, Т-16
	У-УК-3	Э, Т-2, Т-9, Т-15, Т-16
	В-УК-3	Э, Т-2, Т-9, Т-15, Т-16
УК-6	3-УК-6	Э, Т-2, Т-9, Т-15, Т-16
	У-УК-6	Э, Т-2, Т-9, Т-15, Т-16
	В-УК-6	Э, Т-2, Т-9, Т-15, Т-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Canada Garage	0	0	Т. б
Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84]	С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»		по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»		выставляется студенту, если он имеет
		E	знания только основного материала, но не
60-64			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
Ниже 60			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 93 Курс общей физики Т. 3 Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц, , : , 2022
- 2. 620 М29 Нанотехнологии Ударный вводный курс : учебное пособие, Лахтакия А., Мартин-Пальма Р.Дж., Долгопрудный: Интеллект, 2014
- 3. 538.9 К12 Физика макроскопических квантовых систем : курс лекций; семинары, Каган М.Ю., Москва: Издательский дом МЭИ, 2014

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Курс "Физика твердого тела применительно к наноструктурам" рассчитан на один семестр, преподается в 1-м семестре магистратуры и разделен на четыре раздела:

- 1. Введение, основы квантовомеханического представления
- 2. Зонная теория твердого тела
- 3. Наноструктуры
- 4. Квазичастицы в твердых телах и наноструктурах

По завершении каждого раздела студентам будет предложено пройти Обязательный Текущий Контроль (ОТК), проводимый в виде ответов на вопросы.

По результатам ответов на вопросы студентам начисляются баллы.

Максимальное количество баллов, которые возможно набрать по окончанию первого, второго, третьего и четвертого разделов - 10, 15, 15 и 10 соответственно.

Тестовые задания приведены в Фонде Оценочных Средств по данной дисциплине, являющимся неотъемлемой частью учебно-методического комплекса учебной дисциплины «Физика твердого тела применительно к наноструктурам»

На решение тестовых заданий студенту отводится 30 минут.

Если студент не набирает 50% баллов, то задание считается незасчитанным и у студента образуется долг, который должен быть закрыт в течение семестра или на зачетной неделе.

Таким образом, к экзамену студент может максимально набрать 50 баллов.

Экзамен проводится в виде ответов 2 случайно выбранных вопроса из списка контрольных вопросов к экзамену. Максимальное время подготовки ответа - 1 час.

По результатам экзамена студент может получить максимально 50 баллов.

Баллы, полученные за экзамен суммируются с баллами, полученными по результатам текущего контроля в течение семестра.

Итого, максимальное количество баллов, которые может получить студент по данной дисциплине составляет 100.

Итоговая оценка по дисциплине определяется на основании набранных баллов по следующей таблице:

Отлично (A) - 90-100 баллов Хорошо (D, C, B) - 70-89 баллов Удовлетворительно (E, D) - 60-69 баллов Неудовлетворительно (F) - менее 60 баллов

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс "Физика твердого тела применительно к наноструктурам" рассчитан на один семестр, преподается в 1-м семестре магистратуры и разделен на четыре раздела:

- 1. Введение, основы квантовомеханического представления
- 2. Зонная теория твердого тела
- 3. Наноструктуры
- 4. Квазичастицы в твердых телах и наноструктурах

По завершении каждого раздела студентам будет предложено пройти Обязательный Текущий Контроль (ОТК), проводимый в виде ответов на вопросы.

По результатам ответов на вопросы студентам начисляются баллы.

Максимальное количество баллов, которые возможно набрать по окончанию первого, второго, третьего и четвертого разделов - 10, 15, 15 и 10 соответственно.

Тестовые задания приведены в Фонде Оценочных Средств по данной дисциплине, являющимся неотъемлемой частью учебно-методического комплекса учебной дисциплины «Физика твердого тела применительно к наноструктурам»

На решение тестовых заданий студенту отводится 30 минут.

Если студент не набирает 50% баллов, то задание считается незасчитанным и у студента образуется долг, который должен быть закрыт в течение семестра или на зачетной неделе.

Таким образом, к экзамену студент может максимально набрать 50 баллов.

Экзамен проводится в виде ответов 2 случайно выбранных вопроса из списка контрольных вопросов к экзамену. Максимальное время подготовки ответа - 1 час.

По результатам экзамена студент может получить максимально 50 баллов.

Баллы, полученные за экзамен суммируются с баллами, полученными по результатам текущего контроля в течение семестра.

Итого, максимальное количество баллов, которые может получить студент по данной дисциплине составляет 100.

Итоговая оценка по дисциплине определяется на основании набранных баллов по следующей таблице:

Отлично (A) - 90-100 баллов Хорошо (D, C, B) - 70-89 баллов Удовлетворительно (E, D) - 60-69 баллов Неудовлетворительно (F) - менее 60 баллов

Автор(ы):

Осадчий Александр Валентинович, к.ф.-м.н.