Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ТЕХНОЛОГИИ ЗАМКНУТОГО ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ПЕРЕРАБОТКА ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА (ЧАСТЬ 2)

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	5	180	16	32	0		96	0	Э
Итого	5	180	16	32	0	16	96	0	

АННОТАЦИЯ

Дисциплина «Переработка отработавшего ядерного топлива (2)» посвящена ознакомлению студентов с инженерными и химико-технологическими задачами, связанными разработкой технологий переработки отработавшего ядерного топлива (ОЯТ) и оборудования для их реализации.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью дисциплины «ПЕРЕРАБОТКА ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА (2)» является подготовка студентов к решению инженерных и химико-технологических задач, связанных разработкой технологий переработки отработавшего ядерного топлива (ОЯТ) и оборудования для их реализации. Среди задач курса:

- Изучение промышленно-реализованных и перспективных технологий переработки ОЯТ РБН.
 - Понятие открытого и замкнутого топливного цикла. Место переработки ОЯТ в ЯТЦ.
- Ознакомление с основными процессами технологии переработки ОЯТ и оборудованием для их реализации.
 - Особенности переработки ОЯТ тепловых и быстрых реакторов.
- Ознакомление с требованиями к конечным продуктам переработки ОЯТ. Ознакомления с требованиями к системе обращения с РАО и основными методами обращения с РАО.
- Изучение основных принципов обеспечения ядерной безопасности и взрывопожаробезопасности. .
- Обучение студентов умениям применять полученные знания в производственной и научной деятельности, приобретение навыков работы с научной, справочной и электронной литературой, применению современных компьютерных технологий при подготовке домашних заданий.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Учебная программа соответствует требованиям образовательного стандарта высшего образования национального исследовательского ядерного университета «МИФИ» по направлению 14.04.02 - Ядерные физика и технологии, «Профессиональный модуль», «Дисциплины по выбору».

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
УКЦ-1 [1] – Способен решать	3-УКЦ-1 [1] – Знать современные цифровые технологии,
исследовательские, научно-	используемые для выстраивания деловой коммуникации
технические и производственные	и организации индивидуальной и командной работы

У-УКЦ-1 [1] – Уметь подбирать наиболее релевантные задачи в условиях цифровые решения для достижения поставленных целей неопределенности, в том числе и задач, в том числе в условиях неопределенности выстраивать деловую коммуникацию и организовывать В-УКЦ-1 [1] – Владеть навыками решения работу команды с использованием исследовательских, научно-технических и производственных задач с использованием цифровых цифровых ресурсов и технологий в цифровой среде технологий 3-УКЦ-2 [1] – Знать основные цифровые платформы, УКЦ-2 [1] – Способен к самообучению, самоактуализации и технологи и интернет ресурсы используемые при онлайн саморазвитию с использованием обучении У-УКЦ-2 [1] – Уметь использовать различные цифровые различных цифровых технологий в технологии для организации обучения условиях их непрерывного В-УКЦ-2 [1] – Владеть навыками самообучения, совершенствования самооактулизации и саморазвития с использованием различных цифровых технологий

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
		опыта)	
	ИННОВ	ационный	
Исследования и	Ядерные	ПК-6.1 [1] - Способен	3-ПК-6.1[1] - Знать
разработки,	энерготехнологии	применять полученные	промышленно-
направленные на	нового поколения;	знания для разработки	реализованные и
создание новой	функциональные и	новой технологической	перспективные
технологической	конструкционные	платформы атомной	технологии
платформы атомной	материалы ядерных	энергетики с	переработки
энергетики, расчетное	реакторов;	вовлечением в	отработавшего
сопровождение	программные	топливный цикл урана-	ядерного топлива
энергетического	комплексы и	238 и продуктов	реакторов на быстрых
оборудования,	математические	переработки	нейтронах, требования
обоснование ядерной	модели для	отработавшего	к конечным продуктам
и радиационной	теоретического и	ядерного топлива.	переработки
безопасности	расчетно-		отработавшего
объектов	аналитического	Основание:	ядерного топлива,
использования	анализа	Профессиональный	основные методы
атомной энергии.	безопасности АЭС,	стандарт: 24.078	обращения с
	объекты		радиоактивными
	использования		отходами.;
	атомной энергии и		У-ПК-6.1[1] - Уметь
	ядерного наследия,		применять
	в части научно-		полученные знания в
	технического и		производственной и
	организационно-		научной
	правового		деятельности.;

	обоснования и		В-ПК-6.1[1] - Владеть
	обеспечения		методами обеспечения
	безопасности.		ядерной безопасности
			и взрыво- и
			пожаробезопасности
			применительно к
			технологиям
			переработки
			отработавшего
			ядерного топлива.
Исследования и	Ядерные	ПК-13 [1] - Способен	3-ПК-13[1] - Знать
разработки,	энерготехнологии	проектировать,	математические
направленные на	нового поколения;	создавать и внедрять	методы и
создание новой	функциональные и	новые продукты и	компьютерные
технологической	конструкционные	системы и применять	технологии,
платформы атомной	материалы ядерных	теоретические знания в	необходимые для
энергетики, расчетное	реакторов;	реальной инженерной	проектирования и
сопровождение	программные	практике	разработки
энергетического	комплексы и	практике	программного
оборудования,		Основание:	обеспечения для
обоснование ядерной	математические	Профессиональный	инженерного анализа
и радиационной	модели для теоретического и	стандарт: 24.078	инженерного анализа инновационных
безопасности	_	Стандарт. 24.078	·
объектов	расчетно-		продуктов.;
	аналитического		У-ПК-13[1] - Уметь
использования	анализа		разрабатывать и
атомной энергии.	безопасности АЭС,		тестировать
	объекты		программное
	использования		обеспечение для
	атомной энергии и		инженерного анализа
	ядерного наследия,		инновационных
	в части научно-		продуктов.;
	технического и		В-ПК-13[1] - владеть
	организационно-		навыками разработки
	правового		и тестирования
	обоснования и		программного
	обеспечения		обеспечения для
	безопасности.		инженерного анализа
			инновационных
TI	а	ПС 14 [1] С	продуктов.
Исследования и	Ядерные	ПК-14 [1] - Способен	3-ПК-14[1] - Знать
разработки,	энерготехнологии	оценивать	методы оценки
направленные на	нового поколения;	экономический эффект	эффективности
создание новой	функциональные и	от внедрения	разработок;
технологической	конструкционные	продуктов	У-ПК-14[1] - Уметь
платформы атомной	материалы ядерных	инновационной	оценивать
энергетики, расчетное	реакторов;	деятельности	экономический эффект
сопровождение	программные	производственных и	от внедрения
энергетического	комплексы и	научных	продуктов
оборудования,	математические	подразделений	инновационной
обоснование ядерной	модели для		деятельности
и радиационной	теоретического и	Основание:	производственных и
безопасности	расчетно-	Профессиональный	научных

объектов	аналитического	стандарт: 24.078	подразделений;
использования	анализа		В-ПК-14[1] - Владеть
атомной энергии.	безопасности АЭС,		методами
	объекты		экономического
	использования		расчета и обоснования
	атомной энергии и		инновационных
	ядерного наследия,		проектов
	в части научно-		
	технического и		
	организационно-		
	правового		
	обоснования и		
	обеспечения		
	безопасности.		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
1	ОЯТ на основе смешанного уран- плутониевого топлива. Неводные методы переработки ОЯТ.	1-8	8/16/0	КИ-8 (25)	25	КИ-8	3-ПК-6.1, У-ПК-6.1, В-ПК-6.1, 3-ПК-13, У-ПК-13, В-ПК-14, У-ПК-14, В-ПК-14, 3-УКЦ-1, У-УКЦ-1, В-УКЦ-1, 3-УКЦ-2, У-УКЦ-2, В-УКЦ-2
2	Фторидная технология переработки ОЯТ. Безопасность радиохимических производств.	9-16	8/16/0	КИ-16 (25)	25	КИ-16	3-ПК-6.1, У-ПК-6.1, В-ПК-6.1, 3-ПК-13, У-ПК-13, В-ПК-14, У-ПК-14, В-ПК-14, 3-УКЦ-1,

Итого за 3 Семестр	16/32/0	50	У-УКЦ-1, В-УКЦ-1, 3-УКЦ-2, У-УКЦ-2, В-УКЦ-2	
Контрольные мероприятия за 3 Семестр		50	Э 3-ПК-6.1, У-ПК-6.1, В-ПК-6.1, 3-ПК-13, У-ПК-13, В-ПК-14, У-ПК-14, В-ПК-14, 3-УКЦ-1, У-УКЦ-1, В-УКЦ-1, 3-УКЦ-2, У-УКЦ-2, В-УКЦ-2	

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	3 Семестр	16	32	0
1-8	ОЯТ на основе смешанного уран-плутониевого	8	16	0
	топлива. Неводные методы переработки ОЯТ.			
1 - 8	ОЯТ на основе смешанного уран-плутониевого	Всего а	удиторных	часов
	топлива. Неводные методы переработки ОЯТ.	8	16	0
	ОЯТ на основе смешанного уран-плутониевого топлива.	Онлайн	Ŧ	
	Свойства облученного оксидного и нитридного	0	0	0
	смешанного топлива. Термическая стабильность оксидов и			
	нитридов урана, плутония и смешанных композиций,			
	выход газообразных продуктов деления из топлива,			
	теплопроводность смешанных топлив.			
	Неводные методы переработки ОЯТ. Общая			
	характеристика неводных методов переработки ОЯТ.			
	Литиевый процесс переработки ОЯТ легководных			
	реакторов. Технология AIROX и OREOX - процессов.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Пирометаллургические методы переработки ОЯТ.			
9-16	Фторидная технология переработки ОЯТ.	8	16	0
	Безопасность радиохимических производств.			
9 - 16	Фторидная технология переработки ОЯТ.	Всего	о аудиторі	ных часов
	Безопасность радиохимических производств.	8	16	0
	Фторидная технология переработки ОЯТ. Характеристика	Онла	йн	
	основных свойств фторидов урана, плутония, материалов	0	0	0
	оболочек и продуктов деления. Применение			
	галогенфторидов для фторирования и растворения ОЯТ.			
	Фторидная технология переработки ОЯТ. Разделение			
	фторидов урана, плутония и продуктов деления.			
	Комбинированные схемы переработки ОЯТ.			
	Безопасность радиохимических производств. Ядерная			
	безопасность технологий переработки ОЯТ. Методы			
	обеспечения ЯБ. Методы контроля ЯБ. Основные			
	принципы обращения с ядерными делящимися			
	материалами. Взрывопожаробезопасноть. Принципы			
	обеспечения ВПБ при переработки ОЯТ. Особенности			
	обращения с разными топливными матрицами.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	3 Семестр
1 - 16	Темы практических занятий
	1 Пристанционный ЗЯТЦ с реактором типа БРЕСТ (проект «Прорыв»)
	2 Особенности поведения нитридного ядерного топлива в ядерном реакторе и
	обращение с ОЯТ на основе (U,Pu)N
	3 Неводные методы переработки ОЯТ. Литиевый процесс переработки ОЯТ
	легководных реакторов. Технология AIROX и OREOX - процессов.
	4 Оборудование неводных методов переработки ОЯТ
	5 Газофторидная технология переработки ОЯТ
	6 Пирохимическая переработка облученного нитридного топлива. LINEX-технология
	переработки нитридного топлива
	7 Фторидная технология переработки нитридного топлива
	8 Обеспечение безопасности работ при переработке ОЯТ

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации программы курса «Переработка отработавшего ядерного топлива (2)» используются различные образовательные технологии. Аудиторные занятия проводятся в интерактивных классах. Курс реализуется в сетевой форме на базе Акционерного общества "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (АО «ВНИИНМ»). Особое внимание студентов обращается на научно-технические отчеты АО «ВНИИНМ», где они самостоятельно смогут получать актуальную информацию по читаемым темам.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	-	(КП 1)
ПК-13	3-ПК-13	Э, КИ-8, КИ-16
	У-ПК-13	Э, КИ-8, КИ-16
	В-ПК-13	Э, КИ-8, КИ-16
ПК-14	3-ПК-14	Э, КИ-8, КИ-16
	У-ПК-14	Э, КИ-8, КИ-16
	В-ПК-14	Э, КИ-8, КИ-16
ПК-6.1	3-ПК-6.1	Э, КИ-8, КИ-16
	У-ПК-6.1	Э, КИ-8, КИ-16
	В-ПК-6.1	Э, КИ-8, КИ-16
УКЦ-1	3-УКЦ-1	Э, КИ-8, КИ-16
	У-УКЦ-1	Э, КИ-8, КИ-16
	В-УКЦ-1	Э, КИ-8, КИ-16
УКЦ-2	3-УКЦ-2	Э, КИ-8, КИ-16
	У-УКЦ-2	Э, КИ-8, КИ-16
	В-УКЦ-2	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины		
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе,		

			последовательно, четко и логически		
			стройно его излагает, умеет тесно		
			увязывать теорию с практикой,		
			использует в ответе материал		
			монографической литературы.		
85-89		В	Оценка «хорошо» выставляется студенту,		
75-84		С	если он твёрдо знает материал, грамотно и		
75 01	4 – « <i>xopouo</i> »		по существу излагает его, не допуская		
70-74	_	D	существенных неточностей в ответе на		
70 71			вопрос.		
65-69			Оценка «удовлетворительно»		
		Е	выставляется студенту, если он имеет		
			знания только основного материала, но не		
	3 –		усвоил его деталей, допускает неточности,		
60-64	«удовлетворительно»		недостаточно правильные формулировки,		
			нарушения логической		
			последовательности в изложении		
			программного материала.		
			Оценка «неудовлетворительно»		
		F	выставляется студенту, который не знает		
Ниже 60			значительной части программного		
	2 –		материала, допускает существенные		
	-		ошибки. Как правило, оценка		
	«неудовлетворительно»		«неудовлетворительно» ставится		
			студентам, которые не могут продолжить		
			обучение без дополнительных занятий по		
			соответствующей дисциплине.		

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 621.039 О-75 Основы безопасного обращения и обезвреживания радиоактивных отходов : Учебное пособие, Куликов Е.Г. [и др.], Москва: НИЯУ МИФИ, 2019
- 2. ЭИ С 426 Радиоактивные компоненты АЭС: обращение, переработка, локализация: Допущено УМО вузов России по образованию в области электро- и теплоэнергетики в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки "Ядерная энергетика и теплофизика", Скачек М.А., Москва: МЭИ, 2019

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 81 Обеспечение безопасности обращения с радиоактивными отходами предприятий ядерного топливного цикла : , Пронкин Н.С., Москва: ЛОГОС, 2012
- 2. 621.039 П81 Обеспечение безопасности обращения с радиоактивными отходами предприятий ядерного топливного цикла: учебное пособие, Пронкин Н.С., Москва: ЛОГОС, 2012

- 3. ЭИ С24 Технология и оборудование обезвреживания жидких радиоактивных отходов : учебное пособие, Стриханов М.Н., Жиганов А.Н., Сваровский А.Я., Москва: НИЯУ МИФИ, 2012
- 4. ЭИ Ш72 Физические основы обезвреживания долгоживущих радиоактивных отходов. Потенциал инновационных технологий : учебное пособие для вузов, Шмелев А.Н., Апсэ В.А., Куликов Г.Г., Москва: МИФИ, 2008
- 5. 621.039 Я34 Ядерные технологии : учебное пособие, Куликов Е.Г. [и др.], Москва: НИЯУ МИФИ, 2013

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Поскольку занятия проводятся на базе АО «ВНИИНМ», студенты получают доступ к научно-техническим отчетам предприятия, в которых они могут найти актуальную информацию по читаемым темам.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Дисциплина посвящена ознакомлению студентов с инженерными и химикотехнологическими задачами, связанными разработкой технологий переработки отработавшего ядерного топлива (ОЯТ) и оборудования для их реализации. При разработке курса использована современная отечественная и иностранная литература. Знания, полученные студентами при изучении различных дисциплин, применяются к решению задач характерных для ядерных энергетических установок.

Чтение лекций и проведение семинарских занятий рекомендуется проводить в интерактивных классах. Сложные и многочисленные расчеты не должны затенять сути излагаемых методов, поэтому рекомендуется широко использовать системы символьной математики. В конце изучения курса рекомендуется выдать студентам использованные презентации в электронном виде.

Особое внимание следует обратить на вопросы безопасности. Поскольку занятия проводятся на базе АО «ВНИИНМ» студенты должны получить форму допуска, пройти

медицинскую	комиссия	на	предмет	возможности	обращения	c	источниками	ионизирующего
излучения.								

Автор(ы):

Лаврухин Алексей Анатольевич, к.ф.-м.н., доцент

Рецензент(ы):

профессор Ананьев А.В.