МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ ПОДГОТОВКА КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

УТВЕРЖДАЮ Первый проректор О.В. Нагорнов «31» августа 2023 г.

Программа одобрена НТС ЛАПЛАЗ. Протокол 1/08-577от 31.08.2023 Протокол №1/12-577 от 19.12.2022 Протокол № 3 от 30.08.2021 Протокол № 577/08 от 31.08.2020

ХАРАКТЕРИСТАКА ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ. КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ ВЫПУСКНИКА

ПРОГРАММА ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

Направление подготовки 03.06.01 Физика и астрономия

Программа подготовки: **Ф**изика плазмы

Научная специальность: 1.3.9 Физика плазмы

Квалификация (степень) ИССЛЕДОВАТЕЛЬ. ПРЕПОДАВАТЕЛЬ-ИССЛЕДОВАТЕЛЬ

Срок обучения: 4 года Форма обучения: очная

Содержание

1.	ОБЩИЕ ПОЛОЖЕНИЯ	3
2.	ЦЕЛИ И ЗАДАЧИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ АСПИРАНТУРЫ	4
3.	ОБЪЕМ ПРОГРАММЫ, ФОРМА И НОРМАТИВНЫЙ СРОК ОБУЧЕНИЯ	5
	ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ, ВОИВШИХ ПРОГРАММУ АСПИРАНТУРЫ	6
	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ. МПЕТЕНТНОСТНАЯ МОДЕЛЬ	7
6.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ АСПИРАНТУРЫ	9
7.	ОРГАНИЗАЦИИ-РАБОТОДАТЕЛИ / ЗАКАЗЧИКИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 11	[
ΦО	УЧЕБНЫЙ ПЛАН, КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК, РАБОЧИЕ ПРОГРАММЫ И НДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИН, ПРОГРАММЫ ПРАКТИК, ПРОГРАММА НД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ	

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре.

Основная профессиональная образовательная программа высшего образования – программа подготовки научно-педагогических кадров аспирантуре по направлению подготовки кадров высшей квалификации аспирантуре 03.06.01 Физика и астрономия, направленность Физика плазмы (далее – образовательная программа НИЯУ МИФИ) представляет собой совокупность документов, содержащих общую характеристику, объем, содержание, планируемых результатов освоения, организационно-педагогических условий и форм аттестации. в соответствии с приказом №1259 Минобрнауки и самостоятельно устанавливаемым образовательным стандартом, утвержденному Ученым советом НИЯУ МИФИ № 14/04 от 18.03.2014 г.), с изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 14/07 от 29.08.2014 г.), с изменениями и дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 15/04 от 02.06.2015 г.), изменениями дополнениями, утвержденными Ученым советом НИЯУ МИФИ (Протокол № 16/04 от 16.05.2016), паспорта научной специальности.

Образовательная программа НИЯУ МИФИ разработана на основании положений статей 2 п.7 и 11 п. 10 Федерального закона от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации», а также в соответствии с требованиями международных стандартов инженерного образования Всемирной инициативы СПО и лучших практик отечественных и зарубежных университетов, основными положениями Болонской декларации, требованиями профессионально-общественной, в том числе международной аккредитации образовательных программ (FEANI и др.), требованиями стандарта ГОСТ ISO 9001-2011, требованиями профессиональных отраслевых стандартов, требованиями работодателей.

1.2. Нормативная регламентация образовательной программы.

Основная профессиональная образовательная программа высшего образования — программа подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации в аспирантуре разработана с учетом:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (в действующей редакции);
- Федерального государственного образовательного стандарта по направлению подготовки 03.06.01 «Физика и астрономия», утверждённого приказом Минобрнауки России от 30.07.2014 № 867 (в действующей редакции);

- Образовательного стандарта НИЯУМИФИ (ОС НИЯУ МИФИ) по направлению подготовки 03.06.01 «Физика и астрономия» по уровню высшего образования подготовки кадров высшей квалификации, утвержденный Ученым советом университета Протокол №14/04 от 18.03.2014 (далее ОС НИЯУ МИФИ) (в действующей редакции);
- Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования—программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), утвержденного приказом Минобрнауки России от 19.11.2013 №1259 (в действующей редакции);
- Порядка приема на обучение по образовательным программам высшего образования –программам подготовки научно-педагогических кадров в аспирантуре, утвержденного приказом Минобрнауки России от 26 марта 2014 года № 233 (в действующей редакции);
- Положения о практике обучающихся, осваивающих основные профессиональные образовательные программы высшего образования, утвержденного приказом Минобрнауки России от 27.11.2015 №1383;
- Порядка проведения государственной итоговой аттестации по образовательным программам высшего образования программам подготовки научно-педагогических кадров в аспирантуре (адъюнктуре), программам ординатуры, программам ассистентуры-стажировки, утвержденного приказом Минобрнауки России от 18.03.2016 № 227;
- Положения о практической подготовке обучающихся, утвержденного приказом Министерства науки и высшего образования РФ и Министерства просвещения РФ от5 августа 2020 г. № 885/390.
 - иными локальными актами НИЯУ МИФИ.

1.3. Перечень сокращений

ФГОС ВО – федеральный государственный образовательный стандарт высшего образования;

ОС НИЯУ МИФИ –образовательный стандарт НИЯУМИФИ.

з.е. – зачетная единица;

УК – универсальная компетенция;

УСК – универсальная собственная компетенция;

ОПК – общепрофессиональная компетенция;

ОСПК – общепрофессиональная собственная компетенция;

ПК – профессиональная компетенция;

ПСК – профессиональная собственная компетенция

2. ЦЕЛИ И ЗАДАЧИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ АСПИРАНТУРЫ

2.1. Целью образовательной программы аспирантуры является создание аспирантам условий для приобретения необходимого для осуществления профессиональной деятельности уровня знаний, умений, навыков, опыта

деятельности и подготовки к защите научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук.

- **2.2.** Основными задачами образовательной программы аспирантуры являются:
- формирование человека и гражданина, являющегося высокопрофессиональным членом общества, ориентированными на его развитие и совершенствование;
- удовлетворение образовательных потребностей и интересов обучающихся с учетом его способностей;
 - владение технологией научного познания;
- формирование профессиональной готовности к самостоятельной научно-исследовательской и педагогической деятельности;
- формирование умений и навыков использования информационных технологий в научно- исследовательской и педагогической деятельности;
 - совершенствование иностранного языка для профессиональной деятельности;
 - получение квалификации «Исследователь. Преподаватель-исследователь».

3. ОБЪЕМ ПРОГРАММЫ, ФОРМА И НОРМАТИВНЫЙ СРОК ОБУЧЕНИЯ

- **3.1.** Объем программы аспирантуры составляет 240 зачетных единиц вне зависимости от формы обучения, применяемых образовательных технологий, реализации программы аспирантуры с использованием сетевой формы, реализации программы аспирантуры по индивидуальному учебному плану, в том числе при ускоренном обучении.
 - 3.2. Форма обучения

Форма обучения - очная

- 3.3. Срок получения образования по программе аспирантуры:
- в очной форме обучения, включая каникулы, предоставляемые после прохождения государственной итоговой аттестации, вне зависимости от применяемых образовательных технологий, составляет 4 года.
- **3.4.** Перечень предприятий для прохождения практики и трудоустройства выпускников:
 - НИЦ «Курчатовский институт»,
 - ГК Росатом:
 - РФЯЦ ВНИИЭФ,
 - АО «ГНЦ РФ ТРИНИТИ»,
 - Проектный центр ИТЭР,
 - ИОФРАН,
 - ФИАН,
 - ФИРАН,
 - ОИВТ РАН,
 - ИКИ,
 - ИПМ РАН и др.

4. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ, ОСВОИВШИХ ПРОГРАММУ АСПИРАНТУРЫ

Область профессиональной деятельности выпускников по программе аспирантуры «Физика плазмы» включает решение проблем, требующих применения фундаментальных знаний в области физики и астрономии, в том числе в областях:

- управляемого термоядерного синтеза с магнитным и инерциальным удержанием, пинчи и т.п.;
- термодинамики, кинетики (в т.ч. явления переноса), оптики, элементарных процессов в плазме (ионизация, излучение, столкновения и т.п);
- динамики плазмы: волны, неустойчивости, течения, нелинейные явления (самоорганизация, структуры, турбулентность и т.п), аномальный перенос, электромагнетизм и т.п.;
 - диагностики плазмы;
 - источников и генерации плазмы;
 - заряженной плазмы, пучков частиц в плазме, плазменной электроники;
 - плазмы в космосе и астрофизике;
 - процессов на Солнце и в звездах;
 - плазменных явлений в атмосферах, ионосферах и магнитосферах планет;
- взаимодействия плазмы с веществом в других агрегатных состояниях (с поверхностью твердых тел, с пылевыми частицами, с кластерами, аэрозолями, жидкостями и т.п);
- -плазменных явлений в конденсированном веществе (твердых телах, электролитах и пр);
 - -плазменных технологий и устройств;
 - плазмохимии и реакций в плазме;
 - газоразрядной плазмы и ее применения в лазерах, экологии и медицине;
 - астрофизической плазмы;
 - компьютерного моделирования сложных физических явлений;
- методов обработки информационных потоков большой плотности как в лабораторных установках, так и в установках термоядерного синтеза с тороидальной геометрией.
- **4.1. Объектами профессиональной деятельности** выпускников по программе аспирантуры «**Физика плазмы**» являются:
- плазменные образования различного масштаба, процессы, которые в них протекают, физические, инженерно-физические, физико-химические, природоохранительные и медицинские технологии, физическая экспертиза и диагностика.
 - 4.2. Виды профессиональной деятельности, к которым готовятся

выпускники аспирантуры по программе аспирантуры «Физика плазмы»:

- научно-исследовательская и инновационная деятельность в области физики и астрономии;
- преподавательская деятельность в области физики и астрономии.

Образовательная программа высшего образования — программа аспирантуры направлена на освоение всех видов профессиональной деятельности, к которым готовится выпускник, а также предполагает применение в учебном процессе дистанционных технологий и онлайн-образование.

4.3. Задачи профессиональной деятельности выпускников по программе аспирантуры «Физика плазмы»

- 4.3.1. Научно-исследовательская и инновационная деятельность в области:
- управляемого термоядерного синтеза,
- исследование процессов на границе плазма-стенка в термоядерных и в технологических плазменных установках,
 - разработка и создание плазменных ракетных двигателей,
- исследование плазменных и плазмоподобных сред, в том числе в экстремальных состояниях, в космосе и в лабораторных условиях,
 - разработка конкретных методов научных исследований,
- проведение измерений с использование современных научных комплексов.
- анализ и обобщение результатов научного исследования на основе современных междисциплинарных подходов;
- подготовка научных результатов к представлению на научных семинарах, конференциях, редактирование научных публикаций;
- использование в исследовательской практике современного программного обеспечения.
 - 4.3.2. Преподавательская деятельность:
- проведение учебных занятий со студентами по тематике научного исследования;
 - разработка учебно-методических материалов для работы со студентами
- применение современных информационно-коммуникационных технологий в учебном процессе;
 - передача своих знания учащимся ВУЗов;
- овладение навыками самообразования и современными методиками преподавания специальных научных дисциплин.

5. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ. КОМПЕТЕНТНОСТНАЯ МОДЕЛЬ

В результате освоения образовательной программы «Физика плазмы» в рамках направления подготовки 03.06.01 «Физика и астрономия» должны быть сформированы следующие компетенции:

Шифр компетенции	Наименование компетенции
УК-1	способность к критическому анализу и оценке
	современных научных достижений, генерированию новых
	идей при решении исследовательских и практических
	задач, в том числе в междисциплинарных областях
УК-2	способность проектировать и осуществлять комплексные
	исследования, в том числе междисциплинарные, на основе
	целостного системного научного мировоззрения с
	использованием знаний в области истории и философии
	науки
УК-3	готовность участвовать в работе российских и
	международных исследовательских коллективов по
	решению научных и научно-образовательных задач
УК-4	готовность использовать современные методы и
	технологии научной коммуникации на государственном и
	иностранном языках
УК-5	способность планировать и решать задачи собственного
	профессионального и личностного развития
УСК-1	готовность руководить коллективом в сфере своей
	профессиональной деятельности, толерантно воспринимая
	социальные, этнические, конфессиональные и культурные
	различия
ОПК-1	способность самостоятельно осуществлять научно-
	исследовательскую деятельность в соответствующей
	профессиональной области с использованием современных
	методов исследования и информационно-
OHII 2	коммуникационных технологий
ОПК-2	готовность к преподавательской деятельности по
	основным образовательным программам высшего
ОСПК-1	образования
OCIIK-I	способность использовать профессиональные информационные ресурсы, включая базы данных научного
	цитирования Elibrary, Web of Science, Scopus, при
	планировании и оформлении результатов научных
	исследований и оформлении результатов научных
ПК-1	умение самостоятельно формулировать научные задачи,
	моделировать физические процессы с разработкой
	программного обеспечения, разрабатывать новые приборы
	и методы, проводить экспериментальные и теоретические
	исследования, обрабатывать и анализировать полученные
	результаты в современных экспериментах
	1 T

ПК-2	умение передавать свои знания учащимся ВУЗов, обладать
	навыками самообразования, знать современные методики
	преподавания специальных научных дисциплин
ПСК-1	способность к созданию теоретических и математических
	моделей, описывающих основные процессы и явления в
	плазменных установках
ПСК-2	способность к созданию и диагностики плазменных
	объектов в установках термоядерного синтеза и
	плазменных технологических установках
ПСК-3	способность применять методы плазменной обработки
	материалов и анализа плазменного воздействия на
	материалы

6. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ АСПИРАНТУРЫ

6.1. Материально-техническое обеспечение образовательного процесса

НИЯУ МИФИ располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской деятельности обучающихся, предусмотренных учебным планом.

Материально-технические условия реализации ООП соответствуют требованиям ФГОС. Помещения, предназначены для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Специальные помещения укомплектованы:

- современными установками и экспериментальными стендами: учебный токамак МИФИСТ, большой масс-монохроматор МИФИ, установка с пучковоплазменным разрядом, магнетронные установки разного типа, в том числе с уникальными сильноточным диффузным, сильноточным магнетронным и магнетронным с жидкофазным катодом разрядами, стенд для испытания плазменных двигателей, z-пинч, плазменный фокус, установка Искра, установки для нанесения покрытий, установка для проведения азотирования, ВЧИ-разряд, установка для насыщения тонких пленок водородом, термодесорбционные стенды и др.
- современными оборудованием и приборами: четырехканальный оптоволоконный спектрометр AvaSpec, трехканальный оптоволоконный спектрометр AvaSpec, одноканальные оптоволоконные спектрометрв AvaSpec, течеискатель гелиевый масс-спектрометрический VS PD03, прибор для измерения толщины пленок, тепловизор Fluke, анализатор остаточного газа XT100M, скрэтчтестер Revetest, отрезная машина MECATOME T210, современные форвакуумные

и турбомолекулярные насосы, спиральные насосы, осциллографы Tektronix и оптический Vert.A1, масс-спектрометр микроскоп Axio дифференциальной откачкой 835 VOM DPS, квадрупольный масс-спектрометр HAL gRGA50, ИИ-145, Hiden ионный источник электростатический сканирующий VEGA3 энергоанализатор, электронный микроскоп профилометр Mitutoyo Surftest SJ310, пирометр THERMALERT TX, микроскоп ОРИМ, кварцевый измеритель толщины напыляемых покрытий Микрон 5, микровесы A&D BM-20, электронный микроскоп Hitachi High Technolodgies TM-1000, масс-спектрометр QMG 220M1, гелий-неоновый лазер, твердотельные лазеры, оптические столы, держатели и развязки, энергодисперсионный масс-Oxfords Instruments, импульсный регистратор рентгеновского изображения с микроканальной пластиной, аппарат рентгеновский импульсный МИРА-2д, и др.

Для реализации специальных дисциплин используются аудитории и лаборатории кафедры физики плазмы, оснащенные современными компьютерами, мультимедийным оборудованием, интерактивной доской SMARTBOARD.

Для реализации практик и проведения научно-исследовательской работы используется оборудование и установки, располагаемые в помещениях как самой кафедры физики плазмы и в ее профильных лабораториях: лаборатории Взаимодействия плазмы с поверхностью, лаборатории Физико-химические процессы в термоядерных реакторах, токамак МИФИСТ, так и на предприятиях-заказчиках образовательной программы: АО ГНЦ РФ ТРИНИТИ, НИЦ Курчатовский институт, Проектный центр ИТЭР и др.

6.2. Учебно-методическое обеспечение

НИЯУ МИФИ располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской деятельности обучающихся, предусмотренных учебным планом.

Каждый аспирант течение всего периода обучения обеспечен индивидуальным неограниченным нескольким электроннодоступом К (электронным библиотечным системам библиотекам) И электронной информационно-образовательной среде НИЯУ МИФИ.

Электронно-библиотечная система (электронная библиотека) и электронная информационно-образовательная среда обеспечивают возможность доступа обучающегося из любой точки, в которой имеется доступ к информационнотелекоммуникационной сети "Интернет" (далее — сеть "Интернет"), и отвечающая техническим требованиям организации как на территории НИЯУ МИФИ, так и вне его.

Электронная информационно-образовательная среда организации обеспечивает:

- доступ к учебным планам, рабочим программам дисциплин (модулей), практик и к изданиям электронных библиотечных систем и электронным образовательным ресурсам, указанным в рабочих программах;
- фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения основной образовательной программы;
- проведение всех видов занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;
- формирование электронного портфолио аспиранта, в том числе сохранение работ аспиранта, рецензий и оценок на эти работы со стороны любых участников образовательного процесса;
- взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействие посредством сети "Интернет".

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих.

Функционирование электронной информационно-образовательной среды соответствует законодательству Российской Федерации

7. ОРГАНИЗАЦИИ-РАБОТОДАТЕЛИ / ЗАКАЗЧИКИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Перечень организаций-работодателей/заказчиков образовательной программы:

- Научный центр НИЦ «Курчатовский институт»,
- АО «ГНЦ РФ ТРИНИТИ»,
- Проектный центр ИТЭР.

8. УЧЕБНЫЙ ПЛАН, КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК, РАБОЧИЕ ПРОГРАММЫ И ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИН, ПРОГРАММЫ ПРАКТИК, ПРОГРАММА И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ.

Документы, указанные в п.8, являются неотъемлемой частью данной ОПОП и прилагаются в указанном порядке.

Составитель программы

Гаспарян Ю.М.

Представитель организации-работодателя/заказчика образовательной программы: Заместитель генерального директора

института по научному и инновационному развитию АО «ГНЦ РФ ТРИНИТИ»

Климов Н.С.