Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ЯДЕРНОЙ ФИЗИКИ И КОСМОФИЗИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

УВЛЕКАТЕЛЬНАЯ ЯДЕРНАЯ ФИЗИКА

Направление подготовки (специальность)

[1] 14.04.01 Ядерная энергетика и теплофизика

[2] 14.04.02 Ядерные физика и технологии

[3] 22.04.01 Материаловедение и технологии

материалов

Семестр	трудоемкость, кред.	Общий объем курса, час.	Јекции, час.	занятия, час.	Јаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	форма(ы) контроля, экз./зач./КР/КП
2, 2	2	72	0	30	0		42	0	3
Итого	2	72	0	30	0	0	42	0	

АННОТАЦИЯ

В рамках курса в популярной и занимательной форме рассматриваются наиболее интересные вопросы ядерной физики и физики элементарных частиц, рассказывается о старых и самых последних достижениях этих наук, а также о ещё не решенных проблемах. Обсуждаются различные проявления ядерной физики в окружающем мире и её взаимосвязь с другими областями знаний. Большое внимание уделяется применению ядерно-физических методов в энергетике, промышленности, космонавтике, медицине, химии, геологии, археологии, криминалистике и др. Важную роль ядерная физика играет в фундаментальной науке: рассматриваются её применения в астрофизике и космологии, изучении физики Солнца и солнечно-земных связей. В лекциях в виде краткого конспекта даются основные положения ядерной физики и физики элементарных частиц для лучшего понимания предмета. Предлагая курс слушателям, автор основывался на интересном опыте знакомства с книгой К.Н. Мухина "Занимательная ядерная физика", из которой были заимствованы несколько актуальных сегодня тем.

Курс предназначен для широкого круга слушателей.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В рамках курса в популярной и занимательной форме рассматриваются наиболее интересные вопросы ядерной физики и физики элементарных частиц, рассказывается о старых и самых последних достижениях этих наук, а также о ещё не решенных проблемах. Обсуждаются различные проявления ядерной физики в окружающем мире и её взаимосвязь с другими областями знаний. Большое внимание уделяется применению ядерно-физических методов в энергетике, промышленности, космонавтике, медицине, химии, геологии, археологии, криминалистике и др. Важную роль ядерная физика играет в фундаментальной науке: рассматриваются её применения в астрофизике и космологии, изучении физики Солнца и солнечно-земных связей. В лекциях в виде краткого конспекта даются основные положения ядерной физики и физики элементарных частиц для лучшего понимания предмета. Предлагая курс слушателям, автор основывался на интересном опыте знакомства с книгой К.Н. Мухина "Занимательная ядерная физика", из которой были заимствованы несколько актуальных сегодня тем.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Учебная дисциплина "Увлекательная ядерная физика" входит в программу подготовки магистров ИФиТ НИЯУ МИФИ.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции

УК-1 [1] — Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	3-УК-1 [1] — Знать: методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации У-УК-1 [1] — Уметь: применять методы системного подхода и критического анализа проблемных ситуаций; разрабатывать стратегию действий, принимать конкретные решения для ее реализации В-УК-1 [1] — Владеть: методологией системного и критического анализа проблемных ситуаций; методиками постановки цели, определения способов ее достижения, разработки стратегий действий
УК-3 [2] — Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели	3-УК-3 [2] — Знать: методики формирования команд; методы эффективного руководства коллективами; основные теории лидерства и стили руководства У-УК-3 [2] — Уметь: разрабатывать план групповых и организационных коммуникаций при подготовке и выполнении проекта; сформулировать задачи членам команды для достижения поставленной цели; разрабатывать командную стратегию; применять эффективные стили руководства командой для достижения поставленной цели В-УК-3 [2] — Владеть: умением анализировать, проектировать и организовывать межличностные, групповые и организационные коммуникации в команде для достижения поставленной цели; методами организации и управления коллективом
УК-4 [2] — Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия	3-УК-4 [2] — Знать: правила и закономерности личной и деловой устной и письменной коммуникации; современные коммуникативные технологии на русском и иностранном языках; существующие профессиональные сообщества для профессионального взаимодействия У-УК-4 [2] — Уметь: применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия В-УК-4 [2] — Владеть: методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средств и современных коммуникативных технологий
УКЦ-2 [2] – Способен к самообучению, самоактуализации и саморазвитию с использованием различных цифровых технологий в условиях их непрерывного совершенствования	3-УКЦ-2 [2] — Знать основные цифровые платформы, технологи и интернет ресурсы используемые при онлайн обучении У-УКЦ-2 [2] — Уметь использовать различные цифровые технологии для организации обучения В-УКЦ-2 [2] — Владеть навыками самообучения, самооактулизации и саморазвития с использованием различных цифровых технологий

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Эажама	Объект или область	ь Код и наименование Код и			
Задача					
профессиональной	знания	профессиональной	наименование		
деятельности (ЗПД)		компетенции;	индикатора		
		Основание	достижения		
		(профессиональный	профессиональной		
		стандарт-ПС, анализ	компетенции		
		опыта)			
	научно-исследо	рвательский			
проведении	методы и средства	ПК-2 [3] - Способен	3-ПК-2[3] - Знать		
исследований и	испытаний и	понимать физические	основные		
разработок новых	диагностики,	и химические	физические и		
материалов и	исследования и	процессы,	химические		
композиций, научных и	контроля качества	протекающие в	процессы,		
прикладных	материалов, пленок и	материалах при их	протекающие в		
экспериментов по	покрытий,	получении, обработке	материалах при их		
созданию новых	полуфабрикатов,	и модифицировании,	получении,		
процессов получения и	заготовок, деталей и	использовать в	обработке и		
обработки материалов,	изделий, все виды	исследованиях и	модифицировании,		
а также изделий	исследовательского,	расчетах знания о	:		
	контрольного и	методах	У-ПК-2[3] - Уметь		
	испытательного	исследования,	использовать в		
	оборудования,	анализа, диагностики	исследованиях и		
	аналитической	и моделирования	расчетах знания о		
	аппаратуры,	свойств материалов,	методах		
	компьютерное	проводить	исследования,		
	программное	комплексные	анализа,		
	обеспечение для	исследования,	диагностики и		
	обработки	применяя	моделирования		
	результатов и анализа	стандартные и	свойств		
	полученных данных,	сертификационные	материалов;;		
	моделирования	испытания	В-ПК-2[3] - Владеть		
	поведения	испытания	навыками		
	материалов, оценки и	Основание:	проведения		
	прогнозирования их	Профессиональный	комплексных		
	эксплуатационных	стандарт: 40.011			
	•	Стандарт. 40.011	исследований,		
	характеристик		применяя		
			стандартные и сертификационные		
1 Разработка металар	1 Copperation of	ПК 4 [2] Способот	испытания.		
1 Разработка методов	1 Современный	ПК-4 [2] - Способен	3-ПК-4[2] - Знать:		
регистрации	ядерно-физический	самостоятельно	цели и задачи		
ионизирующих и	эксперимент,	ВЫПОЛНЯТЬ	проводимых		
электромагнитных	современные	экспериментальные и	исследований;		
излучений; создание	электронные системы	теоретические	основные методы и		
теоретических моделей	сбора и обработки	исследования для	средства проведения		
состояния вещества,	данных для ядерных и	решения научных и	экспериментальных		
взаимодействия	физических установок	производственных	и теоретических		
лазерного и	математические	задач	исследований;		
ионизирующего	модели для	0	методы и средства		
излучения с веществом;	теоретического и	Основание:	математической		

создание математических моделей, описывающих процессы в ядерных реакторах, ускорителях, коллайдерах, массспектрометрах; создание методов расчета разделения изотопных и молекулярных смесей; создание современных электронных устройств сбора и обработки информации, учета воздействия на эти устройства ионизирующего и электромагнитного излучений; разработка методов повышения безопасности ядерных и лазерных установок, материалов и технологий; разработка теоретических моделей прохождения излучения через вещество, воздействия ионизирующего, лазерного и электромагнитного излучений на человека и объекты окружающей среды исследования, разработки и

экспериментального исследований фундаментальных взаимодействий элементарных частиц и атомных ядер и их излучений

Профессиональный стандарт: 24.028, 40.008, 40.011

обработки результатов экспериментальных данных; У-ПК-4[2] - Уметь: применять методы проведения экспериментов; использовать математические методы обработки результатов исследований и их обобщения; оформлять результаты научноисследовательских работ; В-ПК-4[2] - Владеть: навыками самостоятельного выполнения экспериментальных и теоретических исследования для решения научных и производственных задач

исследования, разработки и технологии, направленные на регистрацию и обработку информации, разработку теории, создание и применение установок и систем в области физики ядра, частиц, плазмы, конденсированного состояния вещества, физики разделения изотопных и молекулярных смесей, физики атомное ядро, элементарные частицы и плазма, конденсированное состояние вещества, лазеры и их применения, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения их безопасности, ускорители заряженных частиц, современная электронная схемотехника,

ПК-7 [1] - способен использовать и оценивать современные достижения науки и техники для решения профессиональных задач в научно-исследовательской деятельности

Основание: Профессиональный стандарт: 24.028 3-ПК-7[1] - знать новые методы совершенствования действующих технологических процессов; ; У-ПК-7[1] - уметь анализировать информационные документы с результатами научных исследований;; В-ПК-7[1] - владеть современными пакетами прикладных

быстропротекающих	электронные системы		компьютерных
процессов,	ядерных и		программ
радиационной	физических		
медицинской физики,	установок, системы		
радиационного	автоматизированного		
материаловедения,	управления ядерно-		
исследования	физическими		
неравновесных	установками,		
физических процессов,	разработка и		
распространения и	технологии		
взаимодействия	применения приборов		
излучения с объектами	и установок для		
живой и неживой	анализа веществ,		
природы, ядерно-	радиационное		
физических установок,	воздействие		
обеспечения ядерной и	ионизирующих		
радиационной	излучений на		
безопасности,	человека и		
безопасности ядерных	окружающую среду,		
материалов и	радиационные		
физической защиты	технологии в		
ядерных объектов,	медицине,		
систем контроля и	математические		
автоматизированного	модели для		
управления ядерно-	теоретического и		
физическими	экспериментального		
установками.	исследований		
yeranobkamii.	явлений и		
	закономерностей в		
	области физики ядра,		
	частиц, плазмы,		
	конденсированного состояния вещества,		
	ядерных реакторов,		
	распространения и взаимодействия		
	1 1		
	излучения с объектами живой и		
	неживой природы,		
	экологический		
	мониторинг		
	окружающей среды,		
	обеспечение		
	безопасности ядерных		
	материалов, объектов		
	и установок атомной		
	промышленности и		
	энергетики.		
1. Формуна помена на на н	проекти		2 ПИ 5[0] 2
4 Формирование целей	4 Математические	ПК-5 [2] - Способен	3-ПК-5[2] - Знать
проекта (программы)	модели для	проводить расчет и	основные
решения задач,	теоретических,	проектирование	физические законы

критериев и показателей достижения целей, построение структуры их взаимосвязей, выявление приоритетов решения задач с учетом всех аспектов деятельности; разработка обобщенных вариантов решения проблемы, анализ этих вариантов, прогнозирование последствий, нахождение компромиссных решений в условиях многокритериальности, неопределенности, планирование реализации проекта; использование информационных технологий при разработке новых установок, материалов и изделий; разработка проектов технических условий, стандартов и технических описаний новых установок, материалов и изделий

экспериментальных и прикладных проектов по исследованию явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, включая экологический мониторинг окружающей среды, обеспечение безопасности гражданских объектов физических установок и приборов с использованием современных информационных технологий

Основание: Профессиональный стандарт: 24.028, 24.078, 40.008, 40.011 и стандартные прикладные пакеты используемые при моделировании физических процессов и установок; У-ПК-5[2] - Уметь применять стандартные прикладные пакеты используемые при моделировании физических процессов и установок; В-ПК-5[2] - Владеть стандартными прикладными пакетами используемыми при моделировании физических процессов и установок

4 Формирование целей проекта (программы) решения задач, критериев и показателей достижения целей, построение структуры их взаимосвязей, выявление приоритетов решения задач с учетом всех аспектов деятельности; разработка обобщенных вариантов решения проблемы, анализ этих вариантов, прогнозирование последствий, нахождение

4 Математические модели для теоретических, экспериментальных и прикладных проектов по исследованию явлений и закономерностей в области физики ядра, частиц, плазмы, газообразного и конденсированного состояния вещества, распространения и взаимодействия излучения с объектами живой и неживой природы, включая

ПК-6 [2] - Способен оценивать риск и определять меры безопасности для новых установок и технологий, составлять и анализировать сценарии потенциально возможных аварий, разрабатывать методы уменьшения риска их возникновения

Основание: Профессиональный стандарт: 24.028,

3-ПК-6[2] - Знать основные нормативные документы по регулированию рисков возникающих в процессе эксплуатации новых установок и технологий, составлять и анализировать сценарии потенциально возможных аварий, разрабатывать методы уменьшения риска их

24.078, 40.008, 40.011 компромиссных экологический возникновения; решений в условиях У-ПК-6[2] - Уметь мониторинг многокритериальности, окружающей среды, оценивать риск и обеспечение неопределенности, определять меры безопасности для планирование безопасности реализации проекта; гражданских объектов новых установок и использование технологий, информационных составлять и технологий при анализировать разработке новых сценарии установок, материалов потенциально и изделий; разработка возможных аварий, проектов технических разрабатывать условий, стандартов и методы уменьшения технических описаний риска их новых установок, возникновения; В-ПК-6[2] - Владеть материалов и изделий методами оценки рисков и определять меры безопасности для новых установок и технологий, составлять и анализировать сценарии потенциально возможных аварий, разрабатывать методы уменьшения риска их возникновения производственно-технологический 5 Разработка способов 5 Современный ПК-9 [2] - Способен 3-ПК-9[2] - Знать проведения ядерноядерно-физический эксплуатировать, регламент физических эксперимент, проводить испытания эксплуатации и ремонта экспериментов и современные и ремонт экспериментов в детекторные системы современных современных смежных областях и электронные физических физических науки и техники, системы сбора и установок, выполнять установок; способов применения У-ПК-9[2] - Уметь обработки данных для техникоядерно-физических ядерно- физических эксплуатировать, экономические методик в решении проводить установок, расчеты технологических испытания и ремонт математические проблем; использование Основание: современных модели для результатов теоретического и Профессиональный физических стандарт: 24.028, проводимых установок; экспериментального 40.011 В-ПК-9[2] - Владеть исследований и исследований разработок в фундаментальных навыками технологических и взаимодействий эксплуатации, проведения производственных элементарных частиц

целях; реализация

цепочки: исследование,

и атомных ядер

испытаний и

ремонта

			I
развитие, технология,			современных
производство			физических
			установок
7.4	эксперт		D THE 11101 D
7 Анализ технических и	7 Научные	ПК-11 [2] - Способен	3-ПК-11[2] - Знать
расчетно-теоретических	исследования,	к анализу	законодательные и
разработок, учет их	разработки и	технических и	нормативные акты
соответствия	технологии,	расчетно-	регулирующие
требованиям законов в	направленные на	теоретических	деятельность в
наукоемком	регистрацию данных,	разработок, к учету	области
производстве, экологии	сбор и обработку	их соответствия	промышленности,
и безопасности и	научной информации;	требованиям законов	экологии,
другим нормативным	создание и	в области	технической,
актам; оценка	применение	промышленности,	радиационной и
соответствия	экспериментальных	экологии,	ядерной
предлагаемого решения	методов, установок и	технической,	безопасности;
достигнутому мировому	систем в области	радиационной и	У-ПК-11[2] - Уметь
уровню;	физики ядра, частиц,	ядерной безопасности	проводить анализ
рецензирование	космических лучей и	и другим	технических и
проектов, заявок,	астрофизики	нормативным актам	расчетно-
технических заданий,			теоретических
рефератов и отчетов		Основание:	разработок с учетом
		Профессиональный	их соответствия
		стандарт: 24.028,	требованиям
		40.011	законов в области
			промышленности,
			экологии,
			технической,
			радиационной и
			ядерной
			безопасности и
			другим
			нормативным актам; В-ПК-11[2] -
			владеть методами
			анализа технических
			и расчетно-
			теоретических
			разработок, и учета
			их соответствия
			требованиям
			законов в области
			промышленности,
			экологии,
			технической,
			радиационной и
			ядерной
			безопасности и
			другим
совокупность средств,	«периые реакторы и	ПК-12 [2] - Способен	нормативным актам 3-ПК-12[2] - Знать
способов и методов	ядерные реакторы и энергетические	объективно оценить	основные критерии
спосооб и методов	onepi eth teckhe	оовективно оцепить	осповные критерии

человеческой установки, предлагаемое оценки теплогидравлические решение или проект предлагаемого деятельности, и нейтронносвязанных с по отношению к решения или разработкой, созданием физические процессы современному проекта по и эксплуатацией в активных зонах мировому уровню, отношению к установок, ядерных реакторов, подготовить современному вырабатывающих, тепловые измерения и экспертное мировому уровню; преобразующих и контроль, заключение У-ПК-12[2] - Уметь использующих ядерную теплоносители, оценивать Основание: энергию материалы ядерных предлагаемые реакторов, ядерный Профессиональный решения на стандарт: 24.028, топливный цикл, соответствие системы обеспечения 40.011 современному безопасности ядерных мировому уровню, энергетических подготовить установок, системы экспертное управления ядернозаключение; физическими В-ПК-12[2] -Владеть навыками установками, программные подготовки экспертных комплексы и заключений по математические модели для предлагаемым теоретического и проектам экспериментального исследования явлений и закономерностей в области теплофизики и энергетики, перспективные методы преобразования энергии.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	2 Семестр						
1	Первый раздел	1-8	0/16/0	T-8 (25)	25	КИ-8	3-ПК-2, У-ПК-2, В-ПК-2, 3-ПК-4, У-ПК-4, В-ПК-4,

		T	T.				
							3-ПК-5,
							У-ПК-5,
							В-ПК-5,
							3-ПК-6,
							У-ПК-6,
							В-ПК-6,
							3-ПК-7,
							У-ПК-7,
							В-ПК-7,
							3-ПК-9,
							У-ПК-9,
							В-ПК-9,
							3-ПК-11,
							У-ПК-11,
							В-ПК-11,
							3-ПК-12,
							У-ПК-12,
							В-ПК-12,
							3-УК-1,
							У-УК-1,
							В-УК-1,
							3-УК-3,
							У-УК-3,
							В-УК-3,
							3-УК-4,
							У-УК-4,
							В-УК-4,
							3-УКЦ-2,
							У-УКЦ-2,
							В-УКЦ-2
2	Второй раздел	9-15	0/14/0	T-15	25	КИ-15	3-ПК-2,
				(25)			У-ПК-2,
				,			В-ПК-2,
							3-ПК-4,
							У-ПК-4,
							В-ПК-4,
							3-ПК-5,
							У-ПК-5,
							В-ПК-5,
							3-ПК-6,
							У-ПК-6,
							В-ПК-6,
							3-ПК-7,
							У-ПК-7,
							В-ПК-7,
							3-ПК-9,
							У-ПК-9,
							В-ПК-9,
							3-ПК-11,
							В-ПК-11,
							3-ПК-12,
							У-ПК-11,

				У-ПК-12,
				В-ПК-12,
				3-УК-1,
				У-УК-1,
				В-УК-1,
				· · · · · · · · · · · · · · · · · · ·
				3-УК-3,
				У-УК-3,
				В-УК-3,
				3-УК-4,
				У-УК-4,
				В-УК-4,
				3-УКЦ-2,
				У-УКЦ-2,
				В-УКЦ-2, В-УКЦ-2
Umaga ng 2 Casarana	0/20/0	50		D-2 VII-7
Итого за 2 Семестр	0/30/0		מ	2 1117 2
Контрольные		50	3	3-ПК-2,
мероприятия за 2				У-ПК-2,
Семестр				В-ПК-2,
				3-ПК-4,
				У-ПК-4,
				В-ПК-4,
				3-ПК-5,
				У-ПК-5,
				В-ПК-5,
				3-ПК-6,
				· ·
				У-ПК-6,
				В-ПК-6,
				3-ПК-7,
				У-ПК-7,
				В-ПК-7,
				3-ПК-9,
				У-ПК-9,
				В-ПК-9,
				3-ПК-11,
				У-ПК-11,
				В-ПК-11,
				· ·
				3-ПК-12,
				У-ПК-12,
				В-ПК-12,
				3-УК-1,
				У-УК-1,
				В-УК-1,
				3-УК-3,
				У-УК-3,
				В-УК-3,
				3-УК-4,
				У-УК-4,
				В-УК-4,
				3-УКЦ-2,
				У-УКЦ-2,
				В-УКЦ-2

^{* –} сокращенное наименование формы контроля

** – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
T	Тестирование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	2 Семестр	0	30	0
1-8	Первый раздел	0	16	0
1	Что такое ядерная физика?	Всего а	аудиторных	часов
	Основные положения ядерной физики и физики	0	2	0
	элементарных частиц. Описание и сравнение всех	Онлайі	H	
	известных фундаментальных взаимодействий, их	0	0	0
	проявления в окружающем мире. Можно ли			
	промоделировать на суперкомпьютере всю Вселенную и			
	теряется ли информация в чёрных дырах.			
1	Что такое ядерная физика?	Всего а	аудиторных	часов
	Основные положения ядерной физики и физики	0	2	0
	элементарных частиц. Описание и сравнение всех	Онлай	H	
	известных фундаментальных взаимодействий, их	0	0	0
	проявления в окружающем мире. Можно ли			
	промоделировать на суперкомпьютере всю Вселенную и			
	теряется ли информация в чёрных дырах.			
2	Свойства ядер, ядерных сил и квантовая механика.	Всего а	аудиторных	часов
	Атомные ядра и их свойства. Перезарядка нуклонов и	0	2	0
	предсказание мезонов. Виртуальные и реальные частицы.	Онлайн		
	Ядерное время. Описание атомных ядер методами	0	0	0
	квантовой механики. Многонуклонное взаимодействие и			
	численное моделирование атомных ядер. Радиоактивные			
	превращения атомных ядер и уравнение Шрёдингера.			
	Предсказание позитрона и уравнение Дирака. Проблема			
	отцов и детей.			
2	Свойства ядер, ядерных сил и квантовая механика.	Всего а	аудиторных	часов
	Атомные ядра и их свойства. Перезарядка нуклонов и	0	2	0
	предсказание мезонов. Виртуальные и реальные частицы.	Онлайн		
	Ядерное время. Описание атомных ядер методами	0	0	0
	квантовой механики. Многонуклонное взаимодействие и			
	численное моделирование атомных ядер. Радиоактивные			
	превращения атомных ядер и уравнение Шрёдингера.			
	Предсказание позитрона и уравнение Дирака. Проблема			
	отцов и детей.			
3	Сверхтяжёлые элементы и сверхплотные формы	Всего а	аудиторных	часов
	материи	0	2	0

	Энергия связи атомного ядра и островок стабильных	Онлаі	 і́н	
	сверхтяжёлых ядер. Где кончается таблица Менделеева и	0	0	0
	фабрика сверхтяжёлых элементов. Поиск сверхтяжёлых			
	ядер в космическом излучении, метеориты и программа			
	Платон. Нейтронные звёзды - самые большие ядра во			
İ	Вселенной. Существуют ли сверхплотные состояния			
	ядерной материи и может ли Вселенная однажды к ним			
	перейти. Ядерные взаимодействия: виды ядерных реакций			
	и законы сохранения.			ļ
3	Сверхтяжёлые элементы и сверхплотные формы	Всего	аудиторі	ных часов
	материи	0	$\frac{1}{2}$	0
	Энергия связи атомного ядра и островок стабильных	Онлаі	 йн	L -
	сверхтяжёлых ядер. Где кончается таблица Менделеева и	0	0	0
	фабрика сверхтяжёлых элементов. Поиск сверхтяжёлых			ľ
	ядер в космическом излучении, метеориты и программа			
	Платон. Нейтронные звёзды - самые большие ядра во			
	Вселенной. Существуют ли сверхплотные состояния			
	ядерной материи и может ли Вселенная однажды к ним			
	перейти. Ядерные взаимодействия: виды ядерных реакций			
4	и законы сохранения.	Page	OVERMENT	HIV HOOSE
4	Ядерная физика и теории относительности (1).			ных часов
	Применение ядерной физики и её методов для проверки	0	2	0
	теорий относительности Эйнштейна: есть ли отличия	Онлаі		
	между массой и энергией, что такое аннигиляция?, верны	0	0	0
	ли эффекты замедления времени и сокращения размеров.			
	Атомные часы, система глобального позиционирования и			
	релятивистская геодезия.			
4	Ядерная физика и теории относительности (1).			ных часов
	Применение ядерной физики и её методов для проверки	0	2	0
	теорий относительности Эйнштейна: есть ли отличия	Онлаі		T .
	между массой и энергией, что такое аннигиляция?, верны	0	0	0
	ли эффекты замедления времени и сокращения размеров.			
	Атомные часы, система глобального позиционирования и			
	релятивистская геодезия.			
5	Ядерная физика и теории относительности (2).			ных часов
	Гамма-излучение возбуждённых ядер и эффект	0	2	0
	Мёссбауэра. Красное смещение электромагнитных волн.	Онлаі		
	Гравитационное красное смещение и его измерение	0	0	0
	методами ядерной физики.			
5	Ядерная физика и теории относительности (2).			ных часов
	Гамма-излучение возбуждённых ядер и эффект	0	2	0
	Мёссбауэра. Красное смещение электромагнитных волн.	Онлаі	и́н	
	Гравитационное красное смещение и его измерение	0	0	0
	методами ядерной физики.			
6	Ядерная энергетика (1).	-		ных часов
	О "переходе массы в энергию". Капельная модель ядра и	0	2	0
	теория деления. Цепная реакция деления. Первые	Онлаі	йн	
	реакторы и современные атомные электростанции (АЭС).	0	0	0
		1	1	1
	Аварии на АЭС и их последствия. Фундаментальные			
	Аварии на АЭС и их последствия. Фундаментальные эксперименты рядом с АЭС. Природные ядерные			

	О "переходе массы в энергию". Капельная модель ядра и	0	2	0
	теория деления. Цепная реакция деления. Первые			0
	реакторы и современные атомные электростанции (АЭС).	Онлайі 0	0	0
	Аварии на АЭС и их последствия. Фундаментальные			
	эксперименты рядом с АЭС. Природные ядерные			
	реакторы. Атомная бомба.			
7	Ядерная энергетика (2).	Всего	аудиторны	іх часов
	Атомные реакторы на самолётах, кораблях и подводных	0	2	0
	лодках. Радиоизотопный термоэлектрический генератор.	Онлайі	Н	
	Генераторы энергии на полярных станциях, маяках,	0	0	0
	метеостанциях и космических аппаратах. Обеспечение			
	энергией будущих колоний на Луне и Марсе. Портативная			
	ядерная батарейка и "вечное" сердце для человека.			
7	Ядерная энергетика (2).		аудиторны	іх часов
	Атомные реакторы на самолётах, кораблях и подводных	0	2	0
	лодках. Радиоизотопный термоэлектрический генератор.	Онлайі	Н	
	Генераторы энергии на полярных станциях, маяках,	0	0	0
	метеостанциях и космических аппаратах. Обеспечение			
	энергией будущих колоний на Луне и Марсе. Портативная			
	ядерная батарейка и "вечное" сердце для человека.			
8	Ядерная энергетика (3).		аудиторнь	іх часов
	Реакции термоядерного синтеза. Первичный нуклеосинтез	0	2	0
	(первые 3 минуты Вселенной). Термоядерные реакции в	Онлайі	1	,
	звёздах и синтез элементов до железа. Химический состав	0	0	0
	Солнечной системы. Как образовались элементы тяжелее			
	железа: сверхновые и слияния нейтронных звёзд.			
	Искусственный термоядерный реактор, топливо для него и			
	неограниченная энергия. Водородная бомба.	_		
8	Ядерная энергетика (3).		аудиторны	_
	Реакции термоядерного синтеза. Первичный нуклеосинтез	0	2	0
	(первые 3 минуты Вселенной). Термоядерные реакции в	Онлайі		
	звёздах и синтез элементов до железа. Химический состав	0	0	0
	Солнечной системы. Как образовались элементы тяжелее			
	железа: сверхновые и слияния нейтронных звёзд.			
	Искусственный термоядерный реактор, топливо для него и			
0.15	неограниченная энергия. Водородная бомба.		1.4	
9-15	Второй раздел	0	14	0
9	Ядерная физика и математика.		аудиторны	
	Три типа задач о взаимосвязи ядерной физики и	0	2	0
	математики. Игра в рулетку, бумажный человечек и метод	Онлай	1	
	Монте-Карло. Взаимодействия частиц с веществом и его	0	0	0
	моделирование численными методами. Geant4 и другие			
	численные пакеты. Применение машинного обучения в			
	задачах ядерной физики, физики элементарных частиц и			
0	астрофизики.	D		
9	Ядерная физика и математика.		аудиторны	
	Три типа задач о взаимосвязи ядерной физики и	0	2	0
	математики. Игра в рулетку, бумажный человечек и метод	Онлай	1	
	Монте-Карло. Взаимодействия частиц с веществом и его	0	0	0
	моделирование численными методами. Geant4 и другие			
	численные пакеты. Применение машинного обучения в			
	задачах ядерной физики, физики элементарных частиц и			

	астрофизики.				
10	Ядерная физика и химия/промышленность.	Всего	аудиторнь	их часов	
	Открытие искусственной позитронной и электронной	0	2	0	
	радиоактивности. Методы носителя и Сцилларда-	Онлай	Н		
	Чалмерса. Свойства осколков деления. Ионообменная	0	0	0	
	хроматография. Плутоний. Ультрамикрохимия:				
	(элементов) очень мало, (они) очень похожи, (и) очень				
	быстро распадаются. Масс-спектрометрия одного атома.				
	Дефектоскопия и определение химического состава				
	образца.				
10	Ядерная физика и химия/промышленность.	Всего	Всего аудиторных часов		
	Открытие искусственной позитронной и электронной	0 2 0			
	радиоактивности. Методы носителя и Сцилларда-	Онлай	Н	<u> </u>	
	Чалмерса. Свойства осколков деления. Ионообменная	0	0	0	
	хроматография. Плутоний. Ультрамикрохимия:				
	(элементов) очень мало, (они) очень похожи, (и) очень				
	быстро распадаются. Масс-спектрометрия одного атома.				
	Дефектоскопия и определение химического состава				
	образца.				
11	Ядерная физика и медицина.	Всего	аудиторнь	іх часов	
	Портативные радиозонды и "сердце" на ядерной	0	2	0	
	батарейке. Измерение скорости и объёма кровотока.	Онлай	Н		
	Радиоактивность человека. Накопление радиоактивных	0	0	0	
	элементов разными органами. Диагностика и определение				
	заболеваний. Волновая и корпускулярная лучевая терапия.				
	Стерилизация всего: от медицинских инструментов до				
	продуктов питания. Рентгеновский аппарат и природный				
	радиационный фон.				
11	Ядерная физика и медицина.	Всего	аудиторнь	іх часов	
	Портативные радиозонды и "сердце" на ядерной	0	2	0	
	батарейке. Измерение скорости и объёма кровотока.	Онлай	Н	•	
	Радиоактивность человека. Накопление радиоактивных	0	0	0	
	элементов разными органами. Диагностика и определение				
	заболеваний. Волновая и корпускулярная лучевая терапия.				
	Стерилизация всего: от медицинских инструментов до				
	продуктов питания. Рентгеновский аппарат и природный				
	радиационный фон.				
12	Ядерная физика и неожиданные виды томографии.	Всего	аудиторнь	іх часов	
	Мюонная томография: что скрыто внутри пирамид, как	0	2	0	
	заглянуть внутрь реактора аварийной АЭС и предсказать	Онлай	H		
	извержения вулканов. Определение массы Земли при	0	0	0	
	помощи нейтрино.				
12	Ядерная физика и неожиданные виды томографии. Мюонная томография: что скрыто внутри пирамид, как		аудиторнь	их часов	
			2	0	
	заглянуть внутрь реактора аварийной АЭС и предсказать	Онлай	Н		
	извержения вулканов. Определение массы Земли при	0	0	0	
	помощи нейтрино.				
13	Ядерная физика и (космо)археология.	Всего	аудиторнь	их часов	
	Хронология древностей. Радиоуглеродный и другие	0	2	0	
	методы датировки. Трудности измерений: что		Н		
	использовать в качестве часов и как определить уровень	0	0	0	
	солнечной активности тысячи и миллионы лет назад.				

	Определение возраста Земли и расположения континентов			
	в прошлом. Самые древние астрофизические объекты и			
	оценка возраста Вселенной.			
13	Ядерная физика и (космо)археология.	Всего	аушиторі	ных часов
13	Хронология древностей. Радиоуглеродный и другие	0	2	0
	методы датировки. Трудности измерений: что	Онлай		10
	использовать в качестве часов и как определить уровень	0	0	0
	солнечной активности тысячи и миллионы лет назад.	U	U	U
	Определение возраста Земли и расположения континентов			
	в прошлом. Самые древние астрофизические объекты и			
	оценка возраста Вселенной.			
14	Ядерная физика и астрофизика/космология.	Всего	аулиторі	ных часов
	Загадка солнечных нейтрино. Свойства нейтрино: масса и	0	2	0
	осцилляции. Двойной бета-распад и тождественность	Онлай		
	нейтрино и антинейтрино. Нарушения законов сохранения	0	0	0
	в физике элементарных частиц, путешествия в прошлое и	U	U	U
	барионная асимметрия Вселенной. Сверхновые типа Іа как			
	стандартные свечи, знаменитый закон Хаббла и			
	расширение Вселенной. Гамма-источники во Вселенной,			
	гравитационные волны и размерность пространства-			
	времени.			
14	Ядерная физика и астрофизика/космология.	Всего	аулиторі	ных часов
	Загадка солнечных нейтрино. Свойства нейтрино: масса и	0	2	0
	осцилляции. Двойной бета-распад и тождественность	Онлай	ı –	10
	нейтрино и антинейтрино. Нарушения законов сохранения	0	0	0
	в физике элементарных частиц, путешествия в прошлое и	U	U	
	барионная асимметрия Вселенной. Сверхновые типа Іа как			
	стандартные свечи, знаменитый закон Хаббла и			
	расширение Вселенной. Гамма-источники во Вселенной,			
	гравитационные волны и размерность пространства-			
	времени.			
15	Ядерная физика и космические исследования.	Всего	аулиторі	ных часов
	Влияние космического излучения на живые организмы:	0	2	0
	эксперименты на МКС и космический аппарат БИОН,		<u> </u>	
	влияние близких сверхновых на эволюцию живых	0	0	0
	ı			
	организмов и массовые вымирания. Космический загар,			
	организмов и массовые вымирания. Космический загар, возникновение полярных сияний и беспокойный сон			
	возникновение полярных сияний и беспокойный сон			
	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология.			
	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет.			
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе.	Bcero	аудиторя	ных часов
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования.	Bcero 0	аудиторі	ных часов
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы:	-	2	ных часов
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы: эксперименты на МКС и космический аппарат БИОН,	0		0
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы: эксперименты на МКС и космический аппарат БИОН, влияние близких сверхновых на эволюцию живых	0 Онлай	2	
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы: эксперименты на МКС и космический аппарат БИОН, влияние близких сверхновых на эволюцию живых организмов и массовые вымирания. Космический загар,	0 Онлай		0
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы: эксперименты на МКС и космический аппарат БИОН, влияние близких сверхновых на эволюцию живых организмов и массовые вымирания. Космический загар, возникновение полярных сияний и беспокойный сон	0 Онлай		0
15	возникновение полярных сияний и беспокойный сон космонавтов. Радиационная химия, физика, биология. Полёты в дальний космос и колонизация других планет. Поиск воды на Марсе. Ядерная физика и космические исследования. Влияние космического излучения на живые организмы: эксперименты на МКС и космический аппарат БИОН, влияние близких сверхновых на эволюцию живых организмов и массовые вымирания. Космический загар,	0 Онлай		0

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе проведения лекций используется мультимедийное оборудование, иллюстративный материал в форме компьютерных презентаций и образовательных материалов из Интернет.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ПК-11	3-ПК-11	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-11	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-11	3, КИ-8, КИ-15, Т-8, Т-15
ПК-12	3-ПК-12	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-12	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-12	3, КИ-8, КИ-15, Т-8, Т-15
ПК-4	3-ПК-4	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-4	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-4	3, КИ-8, КИ-15, Т-8, Т-15
ПК-5	3-ПК-5	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-5	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-5	3, КИ-8, КИ-15, Т-8, Т-15
ПК-6	3-ПК-6	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-6	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-6	3, КИ-8, КИ-15, Т-8, Т-15
ПК-9	3-ПК-9	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-9	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-9	3, КИ-8, КИ-15, Т-8, Т-15
УК-1	3-УК-1	3, КИ-8, КИ-15, Т-8, Т-15
	У-УК-1	3, КИ-8, КИ-15, Т-8, Т-15
	В-УК-1	3, КИ-8, КИ-15, Т-8, Т-15
УК-3	3-УК-3	3, КИ-8, КИ-15, Т-8, Т-15

	У-УК-3	3, КИ-8, КИ-15, Т-8, Т-15
	В-УК-3	3, КИ-8, КИ-15, Т-8, Т-15
УК-4	3-УК-4	3, КИ-8, КИ-15, Т-8, Т-15
	У-УК-4	3, КИ-8, КИ-15, Т-8, Т-15
	В-УК-4	3, КИ-8, КИ-15, Т-8, Т-15
УКЦ-2	3-УКЦ-2	3, КИ-8, КИ-15, Т-8, Т-15
	У-УКЦ-2	3, КИ-8, КИ-15, Т-8, Т-15
	В-УКЦ-2	3, КИ-8, КИ-15, Т-8, Т-15
ПК-2	3-ПК-2	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-2	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-2	3, КИ-8, КИ-15, Т-8, Т-15
ПК-7	3-ПК-7	3, КИ-8, КИ-15, Т-8, Т-15
	У-ПК-7	3, КИ-8, КИ-15, Т-8, Т-15
	В-ПК-7	3, КИ-8, КИ-15, Т-8, Т-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится

	студентам, которые не могут продолжить обучение без дополнительных занятий по
	соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Самостоятельная аудиторная и внеаудиторная работа студентов является одним из основных видов познавательной деятельности, направленной на более глубокое и разностороннее изучение материалов дисциплины «Увлекательная ядерная физика». Основная часть времени, предусмотренного для самостоятельной работы студентов по дисциплине, отводится на подготовку к лекционным занятиям и итоговому контролю (зачету). Студенты должны прочитать рекомендованные преподавателем учебные и научные материалы.

Самостоятельная аудиторная работа студентов включает обязательное посещение лекций, их конспектирование в тетради. Самостоятельная внеаудиторная работа студентов включает обязательное выполнение домашних заданий, разбор лекционного материала.

Результаты выполнения самостоятельной работы проверяются и оцениваются преподавателем в ходе текущего (промежуточного, итогового) контроля в соответствии с рейтинговой системой оценки и учета успеваемости, учебным планом (расписанием занятий, зачётно-экзаменационной сессии).

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Перед занятиями предоставить студентам учебный план проведения лекций и список рекомендованной литературы.

На лекции основное внимание следует уделять не формулами и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

Проводить регулярный выборочный контроль знаний студентов.

Роденко Светлана Александровна

Майоров Андрей Георгиевич, к.ф.-м.н., доцент