Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ЛАЗЕРНОЙ ФИЗИКИ

ОДОБРЕНО

УМС ИЯФИТ Протокол №01/08/24-573.1 от 30.08.2024 г. УМС ЛАПЛАЗ Протокол №1/08-577 от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИСТОРИЯ ЛАЗЕРНОЙ ТЕХНИКИ И ЛАЗЕРНЫХ ТЕХНОЛОГИЙ

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

[2] 12.03.01 Приборостроение

[3] 01.03.02 Прикладная математика и информатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1, 2	1	36	24	0	0		12	0	3
Итого	1	36	24	0	0	0	12	0	

АННОТАЦИЯ

В курсе рассказывается о истории создания мазеров, а потом лазеров. Дано описание фундаментальных основ получения узконаправленного лазерного излучения на основе вынужденного излучения. Описан принцип работы мазеров и лазеров. Далее рассказывается о широком спектре применения современных лазеров - в промышленных и полупроводниковых технологиях, в медицине, в спектроскопии, в детектировании газовых и жидких веществ в технологических средах, в мониторинге атмосферы и др. Перечисляются все ученые, причастные к созданию лазеров в СССР и в США, даются их краткие биографии, рассказывается о том, как они пришли к идее создания лазеров

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения курса «История лазерной техники и лазерных технологий» является освоение истории лазерной техники и лазерных технологий и формирование у студентов осознания пути, пройденного от первого мазера на аммиаке до современных высокоэффективных лазерах, областей их применения, в том числе, в лазерных технологиях

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина логически и содержательно-методически связана со следующими дисциплинами: квантовая радиофизика, физическая оптика, экспериментальная лазерная физика. При составлении программы учебной дисциплины «История лазерной техники и лазерных технологий» предполагалось, что студент знаком с содержанием основных разделов курсов математики и общей физики, желательно также наличие общих базовых представлений из области информатики и вычислительной техники.

Предметом курса является изучение история создания лазеров и лазерной техники, физических основ усиления и генерации света, рассмотрение принципов работы лазеров всех основных типов и областей их применения

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование	Код и наименование индикатора достижения компетенции
компетенции	
УК-2 [1, 2, 3] – Способен	3-УК-2 [1, 2, 3] – Знать: виды ресурсов и ограничений для
определять круг задач в рамках	решения профессиональных задач; основные методы оценки
поставленной цели и выбирать	разных способов решения задач; действующее
оптимальные способы их	законодательство и правовые нормы, регулирующие
решения, исходя из	профессиональную деятельность
действующих правовых норм,	У-УК-2 [1, 2, 3] – Уметь: проводить анализ поставленной
имеющихся ресурсов и	цели и формулировать задачи, которые необходимо решить
ограничений	для ее достижения; анализировать альтернативные варианты
	решений для достижения намеченных результатов;
	использовать нормативно-правовую документацию в сфере

	профессиональной деятельности В-УК-2 [1, 2, 3] — Владеть: методиками разработки цели и задач проекта; методами оценки потребности в ресурсах, продолжительности и стоимости проекта, навыками работы с нормативно-правовой документацией
УК-6 [1, 2, 3] — Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	3-УК-6 [1, 2, 3] — Знать: основные приемы эффективного управления собственным временем; основные методики самоконтроля, саморазвития и самообразования на протяжении всей жизни У-УК-6 [1, 2, 3] — Уметь: эффективно планировать и контролировать собственное время; использовать методы саморегуляции, саморазвития и самообучения В-УК-6 [1, 2, 3] — Владеть: методами управления собственным временем; технологиями приобретения. использования и обновления социо-культурных и профессиональных знаний, умений, и навыков; методиками саморазвития и самообразования в течение всей жизни

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование

воспитательного потенциала
дисциплин "История науки и
инженерии", "Критическое
мышление и основы научной
коммуникации", "Введение в
специальность", "Научно-
исследовательская работа",
"Научный семинар" для:
- формирования способности
отделять настоящие научные
исследования от лженаучных
посредством проведения со
студентами занятий и регулярных
бесед;
- формирования критического
мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	1 Семестр						
1	Первый раздел	1-8	16/0/0		25	КИ-8	3-УК-2, У-УК-2, В-УК-2, 3-УК-6, У-УК-6, В-УК-6
2	Второй раздел	9-12	8/0/0		25	КИ-12	3-УК-2, У-УК-2, В-УК-2, 3-УК-6, У-УК-6, В-УК-6

Итого за 1 Семе	стр	24/0/0	50		
Контрольные			50	3	3-УК-2,
мероприятия	3a 1				У-УК-2,
Семестр					В-УК-2,
					3-УК-6,
					У-УК-6,
					В-УК-6

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	1 Семестр	24	0	0
1-8	Первый раздел	16	0	0
1 - 2	Фундаментальные основы лазеров	Всего а	удиторных	часов
	История создания и развития квантовой физики и	4	0	0
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онлайі	H	
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4	0	0
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,			
	инверсная населенность			
3	Первые молекулярные генераторы – мазеры	Всего а	аудиторных	часов
	Исторические предпосылки для создания генераторов	2	0	0
	микроволнового диапазона. Работы Н.Г. Басова, А.М.	Онлайі	H	
	Прохорова и Ч. Таунса. Первый лазер на аммиаке,	2	0	0
	принцип его действия. Другие типы мазеров			
4 - 5	Генераторы оптического диапазона – лазеры	Всего аудиторных часон		
	История перехода от квантовых генераторов	4	0	0
	микроволнового диапазона к оптическим квантовым	Онлайн	H	
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4	0	0
	Таунса. Первый в мире рубиновый лазер Т. Меймана.			
	Принцип его работы			
6 - 8	Современные лазеры		удиторных	
	Атомарные газовые лазеры на инертных газах и парах	6	0	0
	металлов, молекулярные газовые лазеры, лазеры на	Онлайі	I	
	красителях, эксимерные лазеры, твердотельные,	6	0	0
	химические лазеры, лазеры на центрах окраски,			
	химические, полупроводниковые, рентгеновские,			
	волоконные лазеры, лазеры на свободных электронах			
9-12	Второй раздел	8	0	0
9	Лазерные технологии в промышленности и в		аудиторных	часов
	полупроводниковых технологиях	2	0	0

^{* –} сокращенное наименование формы контроля

** – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

9-12	Второй раздел Лазерные технологии в промышленности и в	8	0	0
0.12		0	0	
	L POHOROHHI IA HASANTI HASANTI HA CRODONIHI IV SHARTAOHAV	1	1	1
	химические, полупроводниковые, рентгеновские, волоконные лазеры, лазеры на свободных электронах			
	химические лазеры, лазеры на центрах окраски,			
	красителях, эксимерные лазеры, твердотельные,	6	0	0
	металлов, молекулярные газовые лазеры, лазеры на	Онла		
	Атомарные газовые лазеры на инертных газах и парах	6	0	0
6 - 8	Современные лазеры			ных часов
<i>C</i> 0	Принцип его работы	D		
	Таунса. Первый в мире рубиновый лазер Т. Меймана.			
	генераторам. Работы Н.Г. Басова, А.М. Прохорова и Ч.	4	0	0
	микроволнового диапазона к оптическим квантовым	Онла		
	История перехода от квантовых генераторов	4	0	0
4 - 5	Генераторы оптического диапазона – лазеры			ных часов
1 5	принцип его действия. Другие типы мазеров	D-		
	Прохорова и Ч. Таунса. Первый лазер на аммиаке,	2	0	0
	микроволнового диапазона. Работы Н.Г. Басова, А.М.	Онла		
	Исторические предпосылки для создания генераторов	2	0	0
3	Первые молекулярные генераторы – мазеры			ных часов
2	инверсная населенность	D		
	Прохоров, Ч. Таунс, Т. Мейман). Вынужденное излучение,			
	Бор, А. Эйнштейн, В.А. Фабрикант, Н.Г. Басов, А.М.	4	0	0
	теоретических основ лазеров (М. Планк, Э. Резерфорд, Н.	Онла		
	История создания и развития квантовой физики и	4	0	0
1 - 2	Фундаментальные основы лазеров			ных часов
1-8	Первый раздел	16	0	0
1.0	2 Семестр	24	0	0
	воздуха. Лидары комбинационного рассеяния	24		
	флуоресценции для компонентного анализа атмосферного			
	Использование метода лазерно-возбуждаемой			
	искусственных спутников Земли для контроля атмосферы.	2	0	0
	Рефрактометрические измерители, использование	Онла	_	
	Кюветные и дистанционные газоанализаторы.	2	0	0
12	Лазерный мониторинг биосферы	Всего		ных часов
10	методами	D		
	лазерного излучения. Сравнение ЛТС с нелазерными			
	Пороговые характеристики параметров мишени и	2	0	0
	излучения с термоядерным топливом. Модели мишеней.	Онла	_	
	Физические процессы взаимодействия мощного лазерного	2	0	0
11	Лазерный термоядерный синтез			ных часов
4.4	заболеваний	-		
	хирургия. Диагностика и лечение онкоологических	2	0	0
	Лазеры в медицине: стоматология, офтальмология,	Онла		
	Использование лазеров для диагностики и лечения.	2	0	0
10	Лазерные технологии в медицине			ных часов
1.0	пленок, скрайбирование	D		
	поверхности, образование силицдов, осаждение тонких			
	Полупроводниковые лазерные технологии – очистка			
	лазеров в технологических процессах.			
	– лазерная сварка, пайка, резка, сверление. Использование	2	0	0
	Использование лазеров в технологиях обработки металлов	Онла	ин	

	полупроводниковых технологиях	2	0	0	
	Использование лазеров в технологиях обработки металлов	Онлай	íн		
	– лазерная сварка, пайка, резка, сверление. Использование	2	0	0	
	лазеров в технологических процессах.				
	Полупроводниковые лазерные технологии – очистка				
	поверхности, образование силицдов, осаждение тонких				
	пленок, скрайбирование				
10	Лазерные технологии в медицине	Всего	аудитор	ных часов	
	Использование лазеров для диагностики и лечения.	2	0	0	
	Лазеры в медицине: стоматология, офтальмология,	Онлай	íн	•	
	хирургия. Диагностика и лечение онкоологических	2	0	0	
	заболеваний				
11	Лазерный термоядерный синтез		Всего аудиторных часов		
	Физические процессы взаимодействия мощного лазерного	2	0	0	
	излучения с термоядерным топливом. Модели мишеней.	Онлай	íн	•	
	Пороговые характеристики параметров мишени и	2	0	0	
	лазерного излучения. Сравнение ЛТС с нелазерными				
	методами				
12	Лазерный мониторинг биосферы	Всего	аудитор	ных часов	
	Кюветные и дистанционные газоанализаторы.	2	0	0	
	Рефрактометрические измерители, использование	Онлай	íн	•	
	искусственных спутников Земли для контроля атмосферы.	2	0	0	
	Использование метода лазерно-возбуждаемой				
	флуоресценции для компонентного анализа атмосферного				
	воздуха. Лидары комбинационного рассеяния				
	1 1	1			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций, а также самостоятельная работа студентов, заключающаяся в изучении литературы по тематике курса и повторении ранее пройденного материала. Для того чтобы показать современное состояние лазерной техники и лазерных технологий, предусмотрено широкое использование современных научных работ и публикаций по данной теме. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в НИЯУ МИФИ, а также в других московских университетах и институтах

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
УК-2	3-УК-2	3, КИ-8, КИ-12
	У-УК-2	3, КИ-8, КИ-12
	В-УК-2	3, КИ-8, КИ-12
УК-6	3-УК-6	3, КИ-8, КИ-12
	У-УК-6	3, КИ-8, КИ-12
	В-УК-6	3, КИ-8, КИ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил
			программный материал, исчерпывающе,
			последовательно, четко и логически
			стройно его излагает, умеет тесно
			увязывать теорию с практикой,
			использует в ответе материал
			монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»		по существу излагает его, не допуская
		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
60-64			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные

	ошибки. Как правило, оценка
	«неудовлетворительно» ставится
	студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 18 Введение в квантовую физику: , Паршаков А. Н., Санкт-Петербург: Лань, 2022
- 2. ЭИ К 93 Курс общей физики Т. 3 Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц, , : , 2022
- 3. ЭИ П 75 Лазеры и экологический мониторинг атмосферы : , Шеманин В. Г., Привалов В. Е., Фотиади А. Э., Санкт-Петербург: Лань, 2022
- 4. ЭИ Б 82 Лазеры: применения и приложения: , Ивакин С. В. [и др.], Санкт-Петербург: Лань, 2022
- 5. ЭИ Б 82 Лазеры: устройство и действие : , Ивакин С. В., Борейшо А. С., Санкт-Петербург: Лань, 2022

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 53 СЗ4 Общий курс физики Т.4 Оптика, Сивухин Д.В., Москва: Физматлит, 2018
- 2. 535 К 43 Пособие по физике лазеров : , Кириллов Г.А., Захаров Н.Г., Саров: ФГУП РФЯЦ-ВНИИЭФ, 2020

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В качестве промежуточной оценки успеваемости студентов используются письменные опросы.

В конце курса студенты сдают зачет. К зачету допускаются студенты, прошедшие аттестацию по итогам освоения разделов данного семестра (КИ8 и КИ12). Контроль по итогам (КИ) включает результаты письменных опросов (Т8, Т12). Сдача зачета сводится к ответу на вопросы билета. Каждый билет содержит два вопроса по программе курса.

При изучении курса «История лазерной техники и лазерных технологий» необходимо усвоить, почему лазерная техника и лазерные технологии были бы невозможны без возникновения квантовой физики. Необходимо иметь представление о наиболее важных открытиях в этой области физики, которые в конце концов привели к созданию вначале квантовых генераторов — мазеров, и далее первого лазера.

Нужно понимать принцип действия лазера, в основе которого лежат свойства вынужденного излучения, активной среды, усиливающей распространяющееся в ней электромагнитное излучение, оптического резонатора, превращающего усилитель в квантовый генератор. Необходимо знать основные оптические методы создания инверсной населенности в двухуровневой системе — трех- и четырехуровневые схемы накачки.

Также необходимо знать о современных, наиболее распространенных лазеров и их характеристиках — спектральных диапазонов генерации, механизмах лазерной накачки, режимах генерации, мощностей излучения, областей применения.

Необходимо иметь представление о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно знать основные области применения лазерных систем – в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс решает следующие учебные задачи.

В первой части курса необходимо ознакомить студентов с историей возникновения и развития квантовой физики. Нужно объяснить, как неспособность классической физики теоретически объяснить спектральное распределение энергии излучения черного тела привело М. Планка к идее о том, что излучение электромагнитного поля квантуется по частотам, что считается рождением нового представления о строении вселенной – квантовой физики. Далее рассказать о планетарной модели атома Э. Резенфорда и о постулатах Бора, что в совокупности подтверждают гипотезу М. Планка еще до появления квантовой механики.

Необходимо рассказать студентам о важнейшей роли А. Эйнштейна в развитии квантовой физики — его предположение о существовании вынужденного излучения позволило не только вывести формулу Планка для спектрального распределения плотности энергии излучения черного тела и получить выражение для коэффициента поглощения в двухуровневой системе, но и положило основу принципов работы лазеров, поскольку именно вынужденное излучение в среде с инверсной населенностью при наличии оптического резонатора и является излучением лазера.

Далее необходимо перейти к роли В.А. Фабриканта в дальнейшее развитие теории лазера, который предложил метод прямого экспериментального доказательства существования вынужденного излучения и при этом был первым, кто обратил внимание на принципиальную возможность создания среды, не ослабляющей, а усиливающей проходящее через нее излучение.

Необходимо рассказать о первой экспериментальной реализации накопленной к 50-м годам 20-го века теоретической базе — создании мазеров на аммиаке Н.Г. Басовым, М.А. Прохоровым в СССР и Ч. Таунсом в США, излучающих в микроволновом спектральном диапазоне. Нужно рассказать студентам о принципах работе мазеров, их конструкции, характерных мощностях генерации.

После этого следует перейти к идее «перенести» излучение из микроволнового диапазона в оптический, то есть к идее о создании лазеров. За разработку теоретических основ лазера Н.Г. Басов, М.А. Прохоров и Ч. Таунс в 1964 году получили Нобелевские премии по физике. Необходимо рассказать студентом об экспериментах Т. Меймана, который впервые в 1964 году получил излучение лазера, в котором в качестве активной среды использовался рубиновый лазер. Следует рассказать о классических оптических методах создания инверсной населенности – трех- и четырехуровневых схемах накачки.

В следующем разделе необходимо рассказать о дальнейшем развитии лазерной техники, о современных лазерах и дальнейших тенденций развития. Необходимо провести классификацию лазеров по различным параметрам – агрегатному состоянию активной среды, методам лазерной накачки, спектральному диапазону излучения, режимам генерации. При рассказе о конкретных лазеров дать студентам качественное представление о методах получения инверсной населенности, рассказать о режимах работы лазеров, мощностях лазерного излучения.

В заключительном разделе курса необходимо рассказать студентам о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно охватить ряд основных областей применения лазеров — в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

Курс решает следующие учебные задачи.

В первой части курса необходимо ознакомить студентов с историей возникновения и развития квантовой физики. Нужно объяснить, как неспособность классической физики теоретически объяснить спектральное распределение энергии излучения черного тела привело М. Планка к идее о том, что излучение электромагнитного поля квантуется по частотам, что считается рождением нового представления о строении вселенной – квантовой физики. Далее рассказать о планетарной модели атома Э. Резенфорда и о постулатах Бора, что в совокупности подтверждают гипотезу М. Планка еще до появления квантовой механики.

Необходимо рассказать студентам о важнейшей роли А. Эйнштейна в развитии квантовой физики — его предположение о существовании вынужденного излучения позволило не только вывести формулу Планка для спектрального распределения плотности энергии излучения черного тела и получить выражение для коэффициента поглощения в двухуровневой системе, но и положило основу принципов работы лазеров, поскольку именно вынужденное излучение в среде с инверсной населенностью при наличии оптического резонатора и является излучением лазера.

Далее необходимо перейти к роли В.А. Фабриканта в дальнейшее развитие теории лазера, который предложил метод прямого экспериментального доказательства существования вынужденного излучения и при этом был первым, кто обратил внимание на принципиальную возможность создания среды, не ослабляющей, а усиливающей проходящее через нее излучение.

Необходимо рассказать о первой экспериментальной реализации накопленной к 50-м годам 20-го века теоретической базе – создании мазеров на аммиаке Н.Г. Басовым, М.А. Прохоровым в СССР и Ч. Таунсом в США, излучающих в микроволновом спектральном

диапазоне. Нужно рассказать студентам о принципах работе мазеров, их конструкции, характерных мощностях генерации.

После этого следует перейти к идее «перенести» излучение из микроволнового диапазона в оптический, то есть к идее о создании лазеров. За разработку теоретических основ лазера Н.Г. Басов, М.А. Прохоров и Ч. Таунс в 1964 году получили Нобелевские премии по физике. Необходимо рассказать студентом об экспериментах Т. Меймана, который впервые в 1964 году получил излучение лазера, в котором в качестве активной среды использовался рубиновый лазер. Следует рассказать о классических оптических методах создания инверсной населенности – трех- и четырехуровневых схемах накачки.

В следующем разделе необходимо рассказать о дальнейшем развитии лазерной техники, о современных лазерах и дальнейших тенденций развития. Необходимо провести классификацию лазеров по различным параметрам – агрегатному состоянию активной среды, методам лазерной накачки, спектральному диапазону излучения, режимам генерации. При рассказе о конкретных лазеров дать студентам качественное представление о методах получения инверсной населенности, рассказать о режимах работы лазеров, мощностях лазерного излучения.

В заключительном разделе курса необходимо рассказать студентам о развитии лазерных технологий с 60-х годов прошлого века до настоящего времени и о дальнейших перспективах. Нужно охватить ряд основных областей применения лазеров — в промышленности, в полупроводниковых технологиях, в медицине, в мониторинге окружающей среды и др.

Автор(ы):

Шнырев Сергей Львович, д.ф.-м.н., доцент

Рецензент(ы):

Гончуков Сергей Александрович