Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА ПРИКЛАДНОЙ ЯДЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ИФТИС

Протокол № 1

от 28.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВЫ ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД И РАДИАЦИОННОЙ ФИЗИКИ

Направление подготовки (специальность)

[1] 14.03.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	16	16	0		40	0	3
Итого	2	72	16	16	0	0	40	0	

АННОТАЦИЯ

В рамках данного курса рассмотрены вопросы, связанные со структурой и свойствами конденсированных сред и радиационной физики.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является ознакомление студентов с основными представлениями и понятиями современной физики конденсированных сред и радиационной физики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для успешного освоения данной дисциплины необходимы базовые знания по курсу общей физики и высшей математики. Освоение данной дисциплины необходимо для понимания соответствующих разделов ведущих дисциплин по профилю подготовки.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исс.	ледовательский	
Изучение и анализ	информационно-	ПК-1 [1] - Способен	3-ПК-1[1] - знать
научно-технической	измерительные	использовать научно-	отечественный и
информации,	системы,	техническую	зарубежный опыт по
отечественного и	киберфизические	информацию,	тематике
зарубежного опыта по	устройства,	отечественный и	исследования,
тематике	системы контроля и	зарубежный опыт по	современные
исследования	управления ядерно-	тематике исследования,	компьютерные
	физических	современные	технологии и
	установок	компьютерные	информационные
		технологии и	ресурсы в своей
		информационные	предметной области,;
		ресурсы в своей	У-ПК-1[1] - уметь
		предметной области	использовать научно-
			техническую

Основание:	информацию,
Профессиональный	отечественный и
стандарт: 40.011	зарубежный опыт по
	тематике
	исследования,
	современные
	компьютерные
	технологии и
	информационные
	ресурсы в своей
	предметной области;
	В-ПК-1[1] - владеть
	современными
	компьютерными
	технологиями и
	методами
	использования
	информационных
	ресурсов в своей
	предметной области

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1. Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин "Введение в
	формирование	физику взаимодействия
	профессиональной	ионизирующего излучения с
	ответственности, этики и	веществом", "Введение в нейтронную
	культуры инженера-	физику" для формирования
	разработчика комплексных	профессиональной ответственности,
	технических систем (В41)	творческого инженерного мышления
		путем проведения физических
		экспериментов по заданный
		методикам, учитывая конструктивные
		особенности разрабатываемой
		ядерно-физической,
		электрофизической и
		киберфизической аппаратуры и
		составления описания проводимых
		исследований, отчетов, анализа
		результатов и подготовки научных
		публикаций. 2. Использование
		воспитательного потенциала
		дисциплины «Основы
		проектирования киберфизических
		устройств и систем» для
		формирования приверженности к
		профессиональным ценностям, этике
		и культуре инженера-разработчика,
		повышения интереса к инженерно-

проектной деятельности через
изучение вопросов применения
методов программной инженерии в
проектировании, повышения
радиационной стойкости аппаратуры
и учета внешних воздействующих
факторов, ознакомление с
технологиями промышленного
производства посредством
погружения студентов в работу
научных лабораторий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Первый раздел	1-8	8/8/0		50	КИ-8	3-ПК-1, У-ПК-1, В-ПК-1
2	Второй раздел	9-16	8/8/0		50	КИ-15	3-ПК-1, У-ПК-1, В-ПК-1
	Итого за 7 Семестр		16/16/0		100		
	Контрольные мероприятия за 7 Семестр				0	3	3-ПК-1, У-ПК-1, В-ПК-1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недели	Темы занятий / Содержание	Лек., час.	Пр./сем.,	Лаб., час.
	7 Семестр	16	16	0
1-8	Первый раздел	8	8	0
1 - 2	Геометрия кристаллов. Дифракция в кристаллах		т <u> </u>	
	Кристаллическая решетка. Симметрия кристаллов.	2	2	0
	Классификация кристаллов. Кристаллографические	Онлайі	<u> </u>	U
	символы. Обратная решетка. вектор обратной решетки.	0	0	0
	Амплитуда рассеянной волны решеткой точечных атомов.			
	Уравнение дифракции Лауэ. Геометрическая			
	интерпретация уравнения Лауэ. Построение Эвальда. Зоны			
	Бриллюэна. Структурный фактор базиса. Атомный			
	фактор рассеяния. Температурная зависимость линий			
	отражения. Фактор Дебая-Валлера. Экспериментальные			
	дифракционные методы.			
3	Классификация конденсированных сред по типам	Всего а	 аудиторных	часов
	связи	1	1	0
	Ионная, ковалентная, металлическая, водородная связь.	Онлайі	Н	
	Ионные кристаллы. Ковалентные кристаллы. Энергия	0	0	0
	связи. Теория молекулярных кристаллов. Индуцированное			
	и ориентационное дипольное взаимодействие.			
	Металлические кристаллы. Водородная связь. Энергия			
	связи.			
4 - 5	Структура вещества	Всего а 2	аудиторных	часов
	Структурные связки. Различные типы структур. Твёрдые		2	0
	растворы замещения, внедрения и вычитания. Правила	Онлайі	H	
	Юм-Розери. Закон Вегарда. Понятие сверхструктуры.	0	0	0
	Типы интерметаллидов: дальтониды и бертоллиды.			
	Аморфная структура. Квазикристаллы. Жидкие			
	кристаллы.	D		
6	Несовершенства и дефекты в кристаллах.	Всего аудиторных часов		
	Точечноые дефекты: вакансии, межузельные атомы,	1 1 0		
	примесные атомы замещения и внедрения. Дефекты по	Онлай	1	T ₀
	Шоттки, по Френкелю. Дислокации: линейные и	0	0	0
	винтовые дислокации. Дислокации на границах			
	кристаллитов. Двойникование. Поверхностные и объемные дефекты.			
7	1	Всего	⊥ аудиторных	HOCOR
/	Диффузия Атомные механизмы диффузии. Феноменологическое	1	аудиторных 1	0
	описание диффузии. Первый и второй законы Фика.	Онлай	<u>1</u>	10
	Температурная зависимость коэффициентов диффузии.	0	0	0
	Диффузия в твердых растворах замещения. Твердофазные		U	0
	реакции.			
8	Фононы и колебания решетки	Всего а	аудиторных	часов
	Перенос тепловой энергии. Классическая и квантовая	1	1	0
	теории гар-монического кристалла. Фононы и колебания	Онлайі	H	
	решетки. Колебания в решетке из одинаковых атомов.	0	0	0
	Дисперсия. Фазовая и групповая скорости волнового			
	пакета. Решетка с двумя атомами. Оптические и			
	акустические ветви колебаний.			
9-16	Второй раздел	8	8	0

9	Свойства диэлектриков	Всего	аудиторн	ных часов
	Диэлектрическая восприимчивость твердых тел. Поле	1	0	0
	Лоренца. Наведенная поляризация. Электронная, ионная и	Онлай	H	
	ориентационная поляризуемости. Формула Клазиуса-	0	0	0
	Масотти.			
	Теплоемкость кристаллической решетки.			
	Ангармонические взаимодействия в кристаллах. Тепловое			
	расширение. Теплопроводность.			
10	Элементы зонной теории твердых тел	Всего	ампиторі	ных часов
10	Энергетические зоны кристалла. Влияние	1	10	0
	кристаллической периодической решетки. Движение	Онлай	Ü	U
	электронов в кристалле под действием внешнего		_	
		0	0	0
	электрического поля. Эффективная масса электрона.			
	Распределение квантовых состояний электронов внутри			
	30НЫ.	-		
11	Электрические свойства в конденсированных средах	Всего	аудиторн	ых часов
	Классическая электронная теория металлов.	1	1	0
	Вырожденный и невырожденный электронный газ.	Онлай		
	Рассеяние на примесях. Электропроводность сверхчистых	0	0	0
	металлов Электронная теплоемкость и теплопроводность.			
	Сверхпроводимость.			
12	Магнитные свойства твердых тел	Всего	аудиторн	ных часов
	Намагничивание. Магнитная восприимчивость. Магнитная	1	1	0
	проницаемость. Диамагнетизм. Парамагнетизм.	Онлай	H	
	Ферромагнетизм (доменная структура ферромагнетиков).	0	0	0
	Формула Ланжевена. Закон Кюри.			
13 - 14	Применение мессбауровской спектроскопии в	Всего	аудиторн	ных часов
	исслдованиях твердых тел	2	4	0
	Эффект Мессбауэра. Испускание и поглощение фотонов	Онлай	H	•
	ядрами в кристаллах. Схемы ЯГР экспериментов по	0	0	0
	пропусканию и рассеиванию излучения. Параметры ЯГР			
	спектров и их связь с динамическими свойствами решетки			
	. Величина эффекта. Вероятность резонансного			
	поглошения и испускание фотонов в кристаллах.			
	поглощения и испускание фотонов в кристаллах. Исследование процессов упорядочения твердых			
	Исследование процессов упорядочения твердых			
15	Исследование процессов упорядочения твердых растворов.	Всего	аулиторн	INX HACOR
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении.		аудиторн	ных часов
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады.	1	1	иых часов
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия	1 Онлай	1 H	0
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных	1	1	
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов оd. Температурные интервалы образования	1 Онлай	1 H	0
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов об. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и	1 Онлай	1 H	0
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной	1 Онлай	1 H	0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции.	1 Онлай 0	1 0 0	0
15	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов об. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета об. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов	1 Онлай 0	1 0 0	0 0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов.	1 Онлай 0 Всего 1	1 н 0 аудиторн	0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Ed. Сечение образования смещенных атомов об. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета об. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов. Движение дефектов к стокам, рекомбинация вакансий и	1 Онлай 0 Всего 1 Онлай	1 пн О О О О О О О О О О О О О О О О О О	0 0 пых часов 0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Еd. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов. Движение дефектов к стокам, рекомбинация вакансий и смещенных атомов, влияние примесей на процессы отжига	1 Онлай 0 Всего 1	1 н 0 аудиторн	0 0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Еd. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов. Движение дефектов к стокам, рекомбинация вакансий и смещенных атомов, влияние примесей на процессы отжига радиационных дефектов. Макроскопические явления,	1 Онлай 0 Всего 1 Онлай	1 пн О О О О О О О О О О О О О О О О О О	0 0 пых часов 0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Еd. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов. Движение дефектов к стокам, рекомбинация вакансий и смещенных атомов, влияние примесей на процессы отжига радиационных дефектов. Макроскопические явления, связанные с длительным облучением (на примере	1 Онлай 0 Всего 1 Онлай	1 пн О О О О О О О О О О О О О О О О О О	0 0 пых часов 0
	Исследование процессов упорядочения твердых растворов. Образование смещенных атомов при облучении. Каскады. Понятие о предмете радиационной физики. Энергия смещения атома Еd. Сечение образования смещенных атомов оd. Температурные интервалы образования смещенных атомов. Понятие о сечение передачи энергии и принципы расчета оd. Понятие о каскадах и каскадной функции. Понятие об отжиге радиационных дефектов Понятие о термическом отжиге радиационных дефектов. Движение дефектов к стокам, рекомбинация вакансий и смещенных атомов, влияние примесей на процессы отжига радиационных дефектов. Макроскопические явления,	1 Онлай 0 Всего 1 Онлай	1 пн О О О О О О О О О О О О О О О О О О	0 0 пых часов 0

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Изучение теоретического материала дисциплины на лекциях;

□самостоятельное изучение теоретического материала дисциплины с использованием Internet-ресурсов, методических разработок, специальной учебной литературы; практические занятия.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие		
		(КП 1)		
ПК-1	3-ПК-1	3, КИ-8, КИ-15		
	У-ПК-1	3, КИ-8, КИ-15		
	В-ПК-1	3, КИ-8, КИ-15		

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе,

T	I	I
		последовательно, четко и логически
		стройно его излагает, умеет тесно
		увязывать теорию с практикой,
		использует в ответе материал
		монографической литературы.
4 – «хорошо»	В	Оценка «хорошо» выставляется студенту,
	С	если он твёрдо знает материал, грамотно и
	D	по существу излагает его, не допуская
		существенных неточностей в ответе на
		вопрос.
		Оценка «удовлетворительно»
3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
		знания только основного материала, но не
		усвоил его деталей, допускает неточности,
		недостаточно правильные формулировки,
		нарушения логической
		последовательности в изложении
		программного материала.
2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
		выставляется студенту, который не знает
		значительной части программного
		материала, допускает существенные
		ошибки. Как правило, оценка
		«неудовлетворительно» ставится
		студентам, которые не могут продолжить
		обучение без дополнительных занятий по
		соответствующей дисциплине.
	3— «удовлетворительно»	4 – «хорошо» D 3 – «удовлетворительно» E 2 – F

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 81 Радиационная физика, структура и прочность твердых тел : учебное пособие, Бондаренко Γ . Γ ., Москва: Лаборатория знаний, 2020
- 2. 539.2 С 87 Структура и свойства твердых тел : учеб. пособие, Рудаков С.Г. [и др.], Москва: НИЯУ МИФИ, 2018
- 3. ЭИ Б 18 Физика конденсированного состояния : учебное пособие, Байков Ю. А., Кузнецов В. М., Москва: Лаборатория знаний, 2020
- 4. ЭИ К 90 Физика конденсированного состояния в электротехническом материаловедении : учебное пособие, Кульков В. Г., Санкт-Петербург: Лань, 2021
- 5. ЭИ Е 67 Физика твердого тела : учебное пособие, Епифанов Г. И., Санкт-Петербург: Лань, 2021

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 620 Ф50 Физическое материаловедение Т.4 Радиационная физика твердого тела.

Компьютерное моделирование, , : МИФИ, 2021

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1.Обшие положения

- 1.1. Цель методических рекомендаций обеспечить студенту оптимальную организацию процесса изучения дисциплины, а также выполнения различных форм самостоятельной работы
- 1.2. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.3. Приступая к изучению дисциплины студенту необходимо ознакомиться:
 - с содержанием рабочей программы дисциплины,
 - с целями и задачами дисциплины,
 - рекомендуемыми литературными источниками
- методическими разработками по данной дисциплине, имеющимися на образовательном портале и сайте кафедры
 - 2. Рекомендации по подготовке к лекционным занятиям
- 2.1. Изучение дисциплины требует систематического и последовательного накопления знаний, следовательно, пропуски отдельных тем не позволяют глубоко освоить предмет. Поэтому студентам, пропустившим занятия, необходимо самостоятельно проработать тему.
- 2.2. Для понимания материала учебной дисциплины и качественного его усвоения рекомендуется:
- вести конспект лекций. Конспектирование представляет собой сжатое и свободное изложение наиболее важных, кардинальных вопросов темы, излагаемой в лекции. Ведение конспекта создает благоприятные условия для запоминания услышанного, т.к. в этом процессе принимают участие слух, зрение и рука. Конспект ведется в тетради или на отдельных листах.
 - перед очередной лекцией просмотреть по конспекту материал предыдущей лекции;
- прорабатывать учебный материал лекции по учебнику и учебным пособиям для успешного освоения материала
- регулярно отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам
 - записывать возможные вопросы, которые можно задать лектору на лекции

- 3. Рекомендации по подготовке к практическим занятиям
- 3.1. Практические занятия служат для закрепления изученного материала. Подготовка к практическому занятию включает в себя текущую работу над учебными материалами с использованием конспектов и рекомендуемой основной и дополнительной литературы.
 - 3.2. Обучающимся следует при подготовке к практическим занятиям:
- до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;
- внимательно прочитать материал лекций, относящихся к данному практическому занятию;
- рабочая программа дисциплины может быть использована в качестве ориентира в организации подготовки и обучения;
- в ходе практических занятий давать конкретные, четкие ответы по существу вопросов, доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.
 - 4. Самостоятельная работа обучающихся
- 4.1.Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 4.2. Качество освоения учебной дисциплины находится в прямой зависимости от способности студента самостоятельно и творчески учиться.
- 4.3.Обучающимся следует руководствоваться графиком самостоятельной работы, определенным рабочим планом дисциплины и выполнять все плановые задания, выдаваемые преподавателем для самостоятельной работы, и представляться в установленный срок
 - 5. Рекомендации по подготовке и сдаче аттестации по дисциплине
- 5.1 По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 5.2.По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и промежуточная аттестация.
- 5.3. Текущий контроль подразумевает проверку готовности студентов к занятиям, могут быть использованы различные проверочные задания.
- 5.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и конце семестра.
- 5.5. При подготовке к аттестации необходимо по рекомендованным литературным источникам проработать теоретический материал и внимательно изучить материал лекций, соответствующий вопросам, выносимым на аттестацию
- 5.6. Итоговая оценка за зачет представляет собой сумму баллов, заработанных студентом за аттестацию 1 и 2 разделов, и выставляется в соответствии с Положением о кредитномодульной системе.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Обшие положения

- 1.1. При реализации программы дисциплины используются образовательные технологии в форме лекций, практических занятий и самостоятельной работы с использованием Internet-ресурсов, методических разработок, учебной, научно-популярной и научной литературы.
 - 1.2. На первом занятии преподаватель:

знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;

уточняет наполнение лекций и планы практических (семинарских, лабораторных) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;

рекомендует основную и дополнительную литературу для успешного освоения дисциплины;

доводит до сведения студентов систему оценки знаний.

- 2. Рекомендации по подготовке и преподаванию дисциплины
- 2.1. Рекомендации по подготовке и проведению лекций:
- 2.1.1. Цель лекции организация целенаправленной познавательной деятельности студентов по овладению программным материалом учебной дисциплины. При этом лекционный материал рекомендуется постоянно актуализировать (вносить замечания, дополнения, пояснения и т.д.).
- 2.1.2. К типичным структурным элементам лекции относятся: вступление, основная часть, заключение. В начале лекции преподаватель называет тему лекции, основные вопросы, выносимые на лекцию, указывает основную и дополнительную литературу и главы и параграфы в ней, где изложен материал лекции. После каждого раздела делаются обобщающие выводы и даются указания по самостоятельной работе над материалом лекции.
- 2.1.3 Рекомендуется максимально использовать наглядные пособия и технические средства обучения. Для этого разрабатываются презентации. Каждый слайд должен содержать основные положения и сопровождаться дополнительными примерами и пояснениями преподавателя.
 - 2.2. Рекомендации по подготовке и проведению практических (семинарских) занятий:
- 2.2.1. Цель практических (семинарских) занятий предоставление возможностей для углубленного изучения теории, овладения практическими навыками и выработки самостоятельного творческого мышления у студентов. На каждом таком занятии обучающиеся решают практические задачи и демонстрируют результаты выполнения домашнего задания, выданного на предыдущем занятии.
 - 2.3. Рекомендации по организации руководства самостоятельной работой студентов
- 2.3.1. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, официальных государственных документов, законов, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.
- 2.3.2. В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем.
 - 2.4. Рекомендации по осуществлению контроля знаний обучаемых
- 2.4.1. По дисциплине действует балльно-рейтинговая система, которая включает текущий контроль успеваемости и промежуточную аттестацию по итогам освоения дисциплины
- 2.4.2. По дисциплине предусмотрены следующие виды аттестации: текущий контроль, рубежный контроль и промежуточная аттестация.

- 2.4.3. Текущий контроль подразумевает проверку готовности студентов к лекционным, семинарским и практическим занятиям, могут быть использованы различные проверочные задания.
- 2.4.4. Прохождение контрольных рубежей по итогам освоения дисциплины проводится в середине и конце семестра.
- 2.4.5. Этап промежуточной аттестации по итогам освоения дисциплины в целом подразумевает сумму баллов, заработанных студентом за аттестацию 1 и 2 разделов, и выставляется в соответствии с Положением о кредитно-модульной системе.

Автор(ы):

Бойко Надежда Владимировна, к.ф.-м.н.