Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ЛАЗЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ГЕНЕРАЦИЯ И УСИЛЕНИЕ КОРОТКИХ ЛАЗЕРНЫХ ИМПУЛЬСОВ

Направление подготовки (специальность)

[1] 12.04.05 Лазерная техника и лазерные технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	3	108	15	15	0		42	0	Э
Итого	3	108	15	15	0	0	42	0	

АННОТАЦИЯ

В курсе изучаются современные методы модуляции добротности резонаторов лазеров. Рассматриваются различные способы управления формой и спектром генерируемых импульсов. Особое внимание уделяется генераторам фемтосекундных импульсов и их применениям в оптических стандартах частоты, экспериментах по спектроскопии сверхвысокого разрешения, в технологии и т.д. Подробно рассматриваются нелинейно оптические методы преобразования частоты лазерного излучения. Изучаются способы измерения длительности фемтосекундных лазерных импульсов, а также методы восстановления их амплитуды и фазы.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью изучения дисциплины «Генерация и усиление коротких лазерных импульсов» является формирование у магистрантов навыков, необходимых для успешной научной и профессиональной деятельности в области физики мощных лазеров. Методы управления временными и спектральными характеристиками генерируемых импульсов. Преобразование частоты лазерного излучения при квадратичных нелинейных процессах и в том числе генерация высших гармоник. Методы измерения длительности, амплитуды и фазы фемтосекундных лазерных импульсов. Дуализм волна — частица в применении к фотону и квантовая криптография.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина логически и содержательно-методически связана со следующими разделами физики: оптика, нелинейная оптика, спектроскопия, в том числе сверхвысокого разрешения, физика твёрдого тела, взаимодействие излучения с веществом, лазерный термоядерный синтез, лазерная плазма, сверхсильные электромагнитные поля и обнаружение нелинейных эффектов в квантовой электродинамике, генерация и ускорение заряженных частиц, хранение, передача и обработка информации, информационные технологии, измерительные системы, квантовая криптография, технологические применения лазеров и т.д.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	

опыта) научно-исследовательский 3-ПК-1.2[1] - Знать: процессы ПК-1.2 [1] - способен формулирование задачи и плана взаимодействия использовать знания основы теории научного лазерного основ теории резонансного исследования в излучения с резонансного взаимодействия области лазерной веществом, взаимодействия излучения с физики, техники и включая излучения с веществом; веществом; теории лазерных технологий биологические теории квантовых квантовых усилителей на основе проведения усилителей и объекты; лазерные и генераторов, методы библиографической приборы, системы и генераторов, методов создания и усиления работы с применением технологии создания и усиления коротких лазерных современных коротких лазерных импульсов; различного У-ПК-1.2[1] - Уметь: информационных назначения; импульсов в своей технологий; описывать процессы, практической процессы построение происходящие при генерации, деятельности; математических усиления, усилении и генерации Основание: лазерного излучения.; моделей объектов модуляции, распространения и Профессиональный В-ПК-1.2[1] - Владеть: исследования, выбор алгоритма решения детектирования стандарт: 29.004 методами оценки задачи; теоретические лазерного параметров лазерного и экспериментальные излучения; излучения исследования в элементная база области физики лазерной техники, технологий и лазеров, взаимодействия систем управления лазерного излучения с и транспорта веществом, лазерных лазерного технологий; излучения; разработка методов математические лазерной диагностики модели объектов сред и объектов, исследования; лазерных методы лазернофизических медицинских технологий и измерений технологий обработки материалов; оптических информационных технологий; разработка лазерных приборов и технологических систем различного назначения проведение оптических, фотометрических, электрических измерений с выбором технических средств и обработкой

результатов; оформление отчетов, статей, рефератов на базе современных средств редактирования и печати в соответствии с установленными требованиями формулирование ПК-1.4 [1] - способен 3-ПК-1.4[1] - Знать: процессы задачи и плана взаимодействия ставить основные методы научного лазерного экспериментальные экспериментальных исследования в излучения с задачи и проводить исследований с области лазерной веществом, экспериментальные применением лазеров, методы сбора и физики, техники и включая исследования в области лазерных технологий обработки данных; биологические взаимодействия У-ПК-1.4[1] - Уметь: на основе проведения объекты; лазерные излучения с веществом, библиографической приборы, системы и лазерной диагностики и ставить работы с применением лазерных технологий; технологии экспериментальные современных различного применять задачи и проводить информационных современные средства экспериментальные назначения; технологий; измерений, средства исследования в процессы построение генерации, управления области математических усиления, экспериментом, сбора и взаимодействия обработки данных моделей объектов излучения с модуляции, исследования, выбор распространения и веществом, лазерной алгоритма решения детектирования Основание: диагностики и задачи; теоретические лазерного Профессиональный лазерных технологий; и экспериментальные излучения; стандарт: 29.004 применять исследования в элементная база современные средства лазерной техники, измерений, средства области физики технологий и управления лазеров, взаимодействия систем управления экспериментом, сбора лазерного излучения с и обработки данных; и транспорта веществом, лазерных лазерного В-ПК-1.4[1] - Владеть: технологий; излучения; навыками проведения разработка методов математические экспериментальных лазерной диагностики исследований в модели объектов сред и объектов, исследования; области лазерной лазерных физики и лазерных методы лазерномедицинских физических технологий, технологий и измерений применения технологий обработки современных средств материалов; измерений оптических информационных технологий; разработка лазерных приборов и технологических систем различного назначения

проведение оптических, фотометрических, электрических измерений с выбором технических средств и обработкой результатов; оформление отчетов, статей, рефератов на базе современных средств редактирования и печати в соответствии с установленными требованиями ПК-1 [1] - способен 3-ПК-1[1] - Знать: формулирование процессы выбирать оптимальный задачи и плана взаимодействия основные методы метод и разрабатывать научного лазерного исследований исследования в излучения с программы лазерных приборов, области лазерной веществом, экспериментальных систем, комплексов и исследований лазерных физики, техники и включая технологий; лазерных технологий биологические приборов, систем, источники и на основе проведения объекты; лазерные комплексов и приёмники технологий; проводить библиографической приборы, системы и оптического работы с применением технологии оптические, излучения; современных фотометрические и элементную базу различного информационных электрические лазерной техники; назначения; технологий; измерения с выбором области применения процессы построение генерации, необходимых лазерной техники и технических средств и математических усиления, лазерных технологий; обработкой моделей объектов модуляции, У-ПК-1[1] - Уметь: исследования, выбор распространения и полученных выбирать алгоритма решения детектирования результатов лазерного необходимые задачи; теоретические и экспериментальные излучения; Основание: технические средства Профессиональный исследования в элементная база для проведения стандарт: 29.004 оптических, области физики лазерной техники, лазеров, технологий и фотометрических и электрических взаимодействия систем управления лазерного излучения с и транспорта измерений; веществом, лазерных лазерного обрабатывать технологий; излучения; полученные разработка методов математические экспериментальные лазерной диагностики модели объектов результаты; сред и объектов, В-ПК-1[1] - Владеть: исследования; лазерных навыками проведения методы лазерномедицинских физических оптических, технологий и измерений фотометрических и технологий обработки электрических материалов; измерений, обработки оптических экспериментальных

информационных			данных
технологий;			
разработка лазерных			
приборов и			
технологических			
систем различного			
назначения			
проведение			
оптических,			
фотометрических,			
электрических			
измерений с выбором			
технических средств и			
обработкой			
результатов;			
оформление отчетов,			
статей, рефератов на			
базе современных			
средств			
редактирования и			
печати в соответствии			
с установленными			
требованиями			
	проектно-к	онструкторский	
анализ состояния	Лазерные приборы,	ПК-3 [1] - способен	3-ПК-3[1] - Знать:
научно технической	системы и	разрабатывать	физические принципы
проблемы,	технологии	функциональные и	действия приборов и
составление	различного	структурные схемы	систем лазерной
технического задания;	назначения;	приборов и систем	техники, ;
постановка цели и	элементная база	лазерной техники с	У-ПК-3[1] - Уметь:
задач проектирования	лазерной техники,	определением их	проводить
лазерной техники и	технологий, систем	физических принципов	сравнительный анализ
лазерных технологий	управления и	действия, структурно-	изделий-аналогов;
на основе подбора и	транспорта	логических связей и	формулировать
изучения	лазерного	установлением	технические
литературных и	излучения	технических	требования на
патентных		требований на	отдельные блоки,
источников;		отдельные блоки и	узлы и элементы
разработка		элементы	приборов и систем
функциональных и			лазерной техники;
структурных схем		Основание:	разрабатывать и
лазерной техники и		Профессиональный	исследовать новые
лазерных технологий		стандарт: 40.011	способы и принципы
с определением их			функционирования
физических			приборов и систем
принципов действия,			лазерной техники;
структур и			В-ПК-3[1] - Владеть:
установлением			методами анализа и
технических			расчета ожидаемых
требований на			параметров
отдельные блоки и			разрабатываемых
элементы:			приборов и систем

элементы;

приборов и систем

проектирование и		лазерной техники.
конструирование		
лазерных приборов,		
систем, комплексов и		
технологий с		
использованием		
средств		
компьютерного		
проектирования,		
проведением		
проектных расчетов и		
технико-		
экономического		
обоснования.		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

NC-	тазделы учеоной дисп	<u>'</u>	, , ,	•	1 1	1	
№	Наименование			$\mathbf{a}^{\mathbf{K}}$.36	. ·	
п.п	раздела учебной		cT.	ии	ый 1*3	1a [,]	
	дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	2 Семестр						
1	Часть 1	1-8	8/8/0		25	КИ-8	3-ПК-1.2, У-ПК-1.2, В-ПК-1.2, 3-ПК-1.4, У-ПК-1.4, В-ПК-1.4, 3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3
2	Часть 2	9-15	7/7/0		25	КИ-15	3-ПК-1.2, У-ПК-1.2, В-ПК-1.2, 3-ПК-1.4, У-ПК-1.4, В-ПК-1.4, 3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3
	Итого за 2 Семестр		15/15/0		50		

Контрольные	_		50	Э	3-ПК-1.2,
мероприятия за	2				У-ПК-1.2,
Семестр					В-ПК-1.2,
					3-ПК-1.4,
					У-ПК-1.4,
					В-ПК-1.4,
					3-ПК-1,
					У-ПК-1,
					В-ПК-1,
					3-ПК-3,
					У-ПК-3,
					В-ПК-3

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	2 Семестр	15	15	0	
1-8	Часть 1	8	8	0	
1	тема 1	Всего а	удиторных	часов	
	Вводное занятие	1	1	0	
		Онлайн	I		
		0	0	0	
2	тема 2	Всего а	удиторных	часов	
	Введение. Характеристические интенсивности лазерного	1	1	0	
	излучения. Требуемые параметры лазерного излучения	Онлайн			
	для наблюдения различных нелинейных процессов.	0	0	0	
3 - 5	тема 3		Всего аудиторных часов		
	Методы модуляции добротности резонаторов лазеров.	3	3	0	
	Захват Q-модулированного лазера внешним сигналом.	Онлайн	I		
	Синхронизация Q – модулированных лазеров.	0	0	0	
6 - 8	тема 4	Всего а	удиторных	часов	
	Многопроходные усилители мощных лазерных систем для	3	3	0	
	исследований по ЛТС (лазерный термоядерный синтез).	Онлайн	I		
	Излучение осциллирующщего диполя при гармоническом	0	0	0	
	и негармоническом движении. Генерация высших				
	гармоник лазерного излучения.				
9-15	Часть 2	7	7	0	
9 - 10	тема 5	Всего а	удиторных	часов	
	Генерация второй гармоники лазерного излучения;	2	2	0	
	генерация суммарной и разностной частоты.	Онлайн	I		

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Параметрическая генерация и усиление света. Влияние	0	0	0
	дисперсии среды на эффективность преобразования			
	излучения при нелинейных процессах. Условие фазового			
	синхронизма			
11 - 12	тема 6	Всего	аудиторі	ных часов
	Эффективное значение квадратичной нелинейной	2	2	0
	восприимчивости среды – учёт реальной структуры	Онлай	íн	
	нелинейного кристалла. Кристаллы с регулярной	0	0	0
	доменной структурой.			
	Корреляционные методы измерения длительности			
	фемтосекундных лазерных импульсов			
13 - 14	тема 7	Всего	аудиторі	ных часов
	Методы восстановления амплитуды и фазы	2	2	0
	фемтосекундных импульсов: методы самосравнения	Онлай	íн	
	(FROG, MIIPS), методы со спектральной интерференцией	0	0	0
	(SPIDER, PROUD).			
15	тема 8	Всего	аудиторі	ных часов
	Дуализм волна – частица. Эксперименты с одиночными	1	1	0
	фотонами: опыт Юнга, антикорреляция фотонов, опыт	Онлай	<u>———</u> і́н	
	Брауна – Твисса, интерферометр Маха – Цендера; теория	0	0	0
	"заговора"; отложенный выбор.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия в виде лекций и семинаров, а также современные компьютерные технологии и самостоятельная работа студентов, заключающаяся в выполнении домашнего задания, повторения ранее пройденного материала.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	Э, КИ-8, КИ-15
	У-ПК-1	Э, КИ-8, КИ-15
	В-ПК-1	Э, КИ-8, КИ-15
ПК-1.2	3-ПК-1.2	Э, КИ-8, КИ-15
	У-ПК-1.2	Э, КИ-8, КИ-15
	В-ПК-1.2	Э, КИ-8, КИ-15
ПК-1.4	3-ПК-1.4	Э, КИ-8, КИ-15
	У-ПК-1.4	Э, КИ-8, КИ-15
	В-ПК-1.4	Э, КИ-8, КИ-15
ПК-3	3-ПК-3	Э, КИ-8, КИ-15
	У-ПК-3	Э, КИ-8, КИ-15
	В-ПК-3	Э, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал
85-89		В	монографической литературы. Оценка «хорошо» выставляется студенту,
75-84	1	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного

	материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить	
	обучение без дополнительных занятий по	
	соответствующей дисциплине.	

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 73 Волоконные технологические лазеры и их применение : , Голубенко Ю. В., Богданов А. В., Санкт-Петербург: Лань, 2022
- 2. ЭИ К 44 Квантовая и оптическая электроника: , Киселев Г. Л., Санкт-Петербург: Лань, 2022
- 3. 621.37 К59 Основы фемтосекундной оптики: , Козлов С.А., Самарцев В.В., Москва: Физматлит, 2009
- 4. ЭИ К 59 Основы фемтосекундной оптики : учебное пособие, Козлов С. А., Самарцев В. В., Москва: Физматлит, 2009
- 5. ЭИ К 85 Фемтосекундные импульсы. Введение в новую область лазерной физики: , Крюков П. Г., Москва: Физматлит, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 621.37 K85 Лазеры ультракоротких импульсов и их применения : учебное пособие, Крюков П.Г., Долгопрудный: Интеллект, 2012
- 2. 537 X19 Лекции по квантовой радиофизике : , Ханин Я.И., Нижний Новгород: ИПФ РАН, 2005
- 3. 537 К23 Лекции по квантовой электронике: , Карлов Н.В., М.: Наука, 1988
- 4. 535 К38 Оптические солитоны : от световодов к фотонным кристаллам, Агравал Г.П., Кившарь Ю.С., М.: Физматлит, 2005
- 5. 535 Ш47 Принципы нелинейной оптики: , Шен И.Р., М.: Наука, 1989

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Во Введении студентам необходимо обратить внимание на то, что для каждого конкретного применения требуется лазерное излучение со своими специальными параметрами. Для этого необходимо ознакомиться с некоторыми примерами: обработка материалов (металлов и прозрачных диэлектриков), спектроскопия и иные научные применения, передача информации, военные применения, бытовая техника и др. Отсюда становится понятно, что необходимо разрабатывать методы управления различными параметрами лазерного излучения и, в частности, эффективные усилители.

Поскольку этот курс студенты слушают после того, как они прослушали курс по «Теоретической квантовой электронике», они уже имеют представление о лазерных генераторах непрерывного излучения и о однопроходных усилителях. Поэтому необходимо обратить особое внимание на методы модуляции добротности резонаторов лазеров, активных и пассивных. Выяснить как общие черты этих методов так и их различия, такие как возможность синхронизации различных лазерных устройств, и управление временем развития генерации для управления шириной спектра излучения и т.д.

На примере лазерных систем для управляемого термоядерного синтеза необходимо изучить преимущества многопроходных лазерных усилителей как с точки зрения коэффициента усиления, так и достижения эффективного съёма запасённой энергии.

Студентам следует вспомнить сведения о поле осциллирующего диполя. Эти данные будут необходимы для вычисления эффективного значения квадратичной нелинейной восприимчивости среды. В курсе также будут даны представления о генерации высших гармоник лазерного излучения при ионизации атомов благородных газов фемтосекундным лазерным излучением.

Будут рассмотрены нелинейные методы преобразования лазерного излучения: генерация второй гармоники, суммарной и разностной частоты, а также параметрическое усиление световых импульсов. Подчеркнута роль влияния дисперсии среды на эти процессы и необходимость обеспечения условий фазового синхронизма для достижения эффективного преобразования. Рассмотрен учёт реальной структуры кристалла, т.е. матрицы нелинейных коэффициентов восприимчивости для нахождения эффективного значения этого коэффициента. Введены представление о кристаллах с регулярной доменной структурой.

Рассмотрены различные корреляционные методы измерения длительности фемтосекундных лазерных импульсов.

Дано представление о методах восстановления амплитуд и фаз фемтосекундных импульсов: методы самосравнения (FROG, MIIPS) и методы со спектральной интерференцией (SPIDER, PROUD).

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Во Введении необходимо обратить внимание студентов на то, что для каждого конкретного применения требуется лазерное излучение со своими специальными параметрами. Привести некоторые примеры: обработка материалов (металлов и прозрачных диэлектриков), спектроскопия и иные научные применения, передача информации, военные применения, бытовая техника и др. на выбор. Отсюда будет понятно, что необходимы методы управления параметрами лазерного излучения и, в частности, эффективные усилители.

Поскольку этот курс студенты слушают после того, как они прослушали курс по «Теоретической квантовой электронике», они уже имеют представление о лазерных генераторах непрерывного излучения и о однопроходных усилителях. Поэтому их необходимо познакомить с методами модуляции добротности резонаторов лазеров, активных и пассивных. Подчеркнуть как общие черты этих методов так и их различия, такие как возможность синхронизации различных лазерных устройств, и управление временем развития генерации для управления шириной спектра излучения и т.д.

На примере лазерных систем для управляемого термоядерного синтеза показать преимущества многопроходных лазерных усилителей как с точки зрения коэффициента усиления, так и достижения эффективного съёма запасённой энергии.

Напомнить студентам сведения о поле осциллирующего диполя. Эти данные будут необходимы для вычисления эффективного значения квадратичной нелинейной восприимчивости среды. Дать представление о генерации высших гармоник лазерного излучения при ионизации атомов благородных газов фемтосекундным лазерным излучением.

Рассмотреть нелинейные методы преобразования лазерного излучения: генерация второй гармоники, суммарной и разностной частоты, а также параметрическое усиление световых импульсов. Подчеркнуть роль влияния дисперсии среды на эти процессы и необходимость обеспечения условий фазового синхронизма для достижения эффективного преобразования. Рассмотреть учёт реальной структуры кристалла, т.е. матрицы нелинейных коэффициентов восприимчивости для нахождения эффективного значения этого коэффициента. Ввести представление о кристаллах с регулярной доменной структурой.

Рассмотреть различные корреляционные методы измерения длительности фемтосекундных лазерных импульсов.

Дать представление о методах восстановления амплитуд и фаз фемтосекундных импульсов: методы самосравнеия (FROG, MIIPS) и методы со спектральной интерференцией (SPIDER, PROUD).

Автор(ы):

Зубарев Иосиф Геннадиевич, д.ф.-м.н., профессор

Рецензент(ы):

д.ф.м.н., профессор Проценко Е.Д.