Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/0821-573.1

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ДИСКРЕТНАЯ МАТЕМАТИКА

Направление подготовки (специальность)

[1] 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	2	72	30	15	0		27	0	3
Итого	2	72	30	15	0	10	27	0	

АННОТАЦИЯ

Эта дисциплина призвана обеспечить студентов знанием основных математических теорий и методов решения проблем, характерных для прикладной математики, информатики и программирования. Она позволяет овладеть навыками и методами формального описании, моделирования и анализа объектов дискретной математики. В ходе обучения студенты изучают основые свойства и методы формального представления алгоритмов.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения дисциплины является достижение следующих результатов образования: Знания:

на уровне представлений:

- основные объекты комбинаторики и методы их описания и исследований;
- особенность комбинаторных исследований;
- система инвариантов для графов и орграфов;
- изоморфизм и гомеоморфизм графов (орграфов).

на уровне воспроизведения:

- теоретические результаты (теоремы и свойства), характерные для комбинаторных зависимостей и теории графов;
 - методы вычисления инвариантов графов (орграфов);
 - алгебраические методы формирования графов.

на уровне понимания:

- интерпретация и оценка комбинаторных зависимостей на естественном и формальных языках, в различных предметных областях;
 - оценка количественных инвариантов графов и орграфов.

Умения:

теоретические:

- основные комбинаторные проблемы;
- интерпретация комбинаторных операций;
- методы решения комбинаторных задач;
- формулировать прикладные задачи с использованием формализмов теории графов;
- сводить прикладные задачи к задачам поиска системы инвариантов на графах. практические:
- выявлять комбинаторные проблемы и использовать соответствующие им методы решения задач;

навыки:

- применять методы решения комбинаторных задач в прикладной математике, в информатике и в программирование;
 - решения задач анализа графов (поиск характеристик и инвариантов графа)
 - решение задач синтеза графов (по заданному набору инвариантов и ограничений)

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Дискретная математика (комбинаторика и теория графов)» относится к базовой части профессионального цикла и является обязательной дисциплиной для студента

Дисциплина предполагает наличие знаний и умений в объеме курса "Дискретная математика (математическая логика)" и "Математический анализ (Числовые последовательности)".

В свою очередь, дисциплина является предшествующей для следующих курсов:

• Методы оптимизации;

Дисциплина способствует развитию комбинаторного мышления при решении комбинаторных задач, развитию графических методов фиксации взаимосвязей в исследуемых структурах.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции

ОПК-1 [1] — Способен использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

Код и наименование индикатора достижения компетенции

3-ОПК-1 [1] — Знать: базовые законы естественнонаучных дисциплин; основные математические законы; основные физические явления, процессы, законы и границы их применимости; сущность основных химических законов и явлений; методы математического моделирования, теоретического и экспериментального исследования У-ОПК-1 [1] — Уметь: выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат

В-ОПК-1 [1] — Владеть: математическим аппаратом для разработки моделей процессов и явлений, решения практических задач профессиональной деятельности; навыками использования основных общефизических законов и принципов

УКЕ-1 [1] – Способен использовать знания естественнонаучных дисциплин, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в поставленных задачах

3-УКЕ-1 [1] — знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования У-УКЕ-1 [1] — уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи В-УКЕ-1 [1] — владеть: методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами обработки экспериментальных данных, методами работы с прикладными программными продуктами

УК-1 [1] – Способен осуществлять
критический анализ проблемных
ситуаций на основе системного
подхода, вырабатывать стратегию
лействий

3-УК-1 [1] — Знать: методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации У-УК-1 [1] — Уметь: применять методы системного подхода и критического анализа проблемных ситуаций; разрабатывать стратегию действий, принимать конкретные решения для ее реализации В-УК-1 [1] — Владеть: методологией системного и критического анализа проблемных ситуаций; методиками постановки цели, определения способов ее достижения, разработки стратегий действий

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин		
профессиональное воспитание	Создание условий, обеспечивающих, формирование ответственности за профессиональный выбор, профессиональное развитие и профессиональные решения (В18)	Использование воспитательного потенциала дисциплин профессионального модуля для формирования у студентов ответственности за свое профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых информационных технологий.		
профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научно-исследовательская работа",		

"Научный семинар" для:
- формирования способности
отделять настоящие научные
исследования от лженаучных
посредством проведения со
студентами занятий и регулярных
бесед;
- формирования критического
мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	6 Семестр						
1	Логические исчисления	1-8	16/8/0	КР- 9,КИ-8	25	КИ-8	
2	Прикладная теория цифровых автоматов	9-16	14/7/0	БД3- 14,КИ- 16	25	КИ-16	
	Итого за 6 Семестр		30/15/0		50		
	Контрольные мероприятия за 6 Семестр				50		

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
БДЗ	Большое домашнее задание

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	6 Семестр	30	15	0
1-8	Логические исчисления	16	8	0
1	Вводная лекция.	Всего а	удиторных	часов
	Дискретная математика (ДМ) и ее структура. Основные	2	1	
	разделы ДМ. Теоретическое и прикладное значение ДМ.	Онлайн	I	
	Начала ДМ. Множества - основные понятия,			
	классификация множеств, операции над множествами и их			
	свойства.			
2 - 3	Бинарные отношения	Всего а	удиторных	часов
	Декартово произведение. Бинарные и п-арные отношения.	4	2	
	Способы задания бинарных отношений. Функции и	Онлайн	I	
	операции. Свойства бинарных отношений и их			
	диагностика. Классы бинарных отношений. Отношение			
	эквивалентности и его свойства. Отношение			
	упорядоченности, его свойства. Экстремальные			
	характеристики отношения упорядоченности.			
4	Фундаментальные алгебры		удиторных	часов
	Понятие алгебры. Носитель и сигнатура. Группоид -	2 1		
	мультипликативный и аддитивный. Нейтральный элемент.	Онлайн	I	1
	Полугруппа. Группа и ее свойства. Группа подстановок.			
	Произведение подстановок. Циклическое представление			
	подстановок. Вычисление циклических подстановок.			
5 (Кольцо. Тело. Поле.	D		
5 - 6	Логика высказываний		удиторных 	часов
	Высказывание. Простые и составные логические	4	2	
	высказывания. Логические связки (логические операции).	Онлайн	I	1
	Свойства логических операций. Формализация. Логические			
	уравнения и их решение. Логические функции и способы			
	их задания. Первичный терм, конституента, импликанта. Специальные формы: НФ, ДНФ (КНФ), СовДНФ.			
	Равносильность функций. Эквивалентные преобразования			
	функций			
7 - 8	Минимизация логических функций	Всего з	∟ ıудиторных	Hacor
7 - 0	Алгоритм порождения пустых подграфов. Полные графы и	4	<u>2</u>	
	подграфы. Плотность графа. Алгоритм порождения	Онлайн		
	подграфы. Плотность графа. Тенгоритм порождения полных подграфов. Внешняя устойчивость графа и	Оплаин	1	1
	орграфа. Вершинное и реберное покрытия графа.			
	Вершинное и реберное число внешней устойчивых			
	множеств графа.			
9-16	Прикладная теория цифровых автоматов	14	7	0
9	Анализ и синтез логических схем		∟′ ıудиторных	
-	Функциональная полнота. Базис. Суперпозиция. Классы	2	1	1
	,		i *	

	логическими базисами. Задача анализа и синтеза			
	логических схем. Критерии. Метод непосредственного			
	моделирования классического базиса			
10 - 11	Конечные автоматы	Всего а	⊥ аудиторных	часов
	Определение конечного автомата. Автоматы Муры и	4	2	
	автоматы Мили и соотношение между ними. Способы	Онлайі	T	
	задания автоматов. Классификация автоматов. Отношение			
	эквивалентности. Минимальный автомат. Алгоритм			
	минимизации числа состояний автомата. Композиция			
	автоматов. Параллельная, последовательная композиции,			
	Композиция автоматов с обратной связью. Сеть автоматов			
12 - 13	Структурный автомат	Всего а	аудиторных	к часов
	Полуавтомат. Сеть автоматов. Понятие структурного	4	2	
	автомата. Теорема о структурной полноте. Память и	Онлайі	H	
	комбинационный блок. Элементы памяти и их типы.			
	Канонический метод структурного синтеза автоматов.			
	Функции возбуждения и выходов. Программная			
	реализация автоматов.			
14 - 15	Микропрограммный принцип управления	Всего а	аудиторных	к часов
	Композиция операционного и управляющего автоматов.	4	2	
	Микропрограммный автомат. Микрооперация и	Онлайі	H	
	микрокоманда. Функции перехода и их свойства.			
	Микропрограмма (МП). Средства описания			
	микропрограмм. Граф-схемы алгоритмов (ГСА). Связь			
	ГСА с МП. Связь ГСА с автоматами Мура и Мили.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание	
	6 Семестр	
1 - 8	Логические исчисления	
	1. Введение в дискретную математику	
	2. Бинарные отношения.	
	3. Фундаментальные алгебры.	
	4. Логика высказываний.	
	5. Минимизация логических функций.	
9 - 16	Прикладная теория цифровых автоматов	

- 1. Анализ и синтез логических схем.
- 2. Конечные автоматы. Структурный автомат.
- 3. Микропрограммный принцип управления.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1. Лекционные занятия:
- а. комплект электронных презентаций/слайдов,
- b. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук)
 - 2. Практические занятия:
 - а. компьютерный класс,
 - b. презентационная техника (проектор, экран, компьютер/ноутбук),
 - с. стандартный пакет программ Microsoft Office.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения
-------------	---------------------

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
	4 – « <i>xopowo</i> »		материал, грамотно и по существу
70-74	т «морошо»	D	излагает его, не допуская

			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	E	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ М 21 Дискретная математика: , Санкт-Петербург: Лань, 2011
- 2. 519 Г96 Дискретная математика для информатиков и экономистов : учебное пособие, А. И. Гусева, А. Н. Тихомирова, Москва: НИЯУ МИФИ, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

 $1.\ \Im \text{И}\ \text{A}\ 90\ \text{Дискретная}$ математика: графы, матроиды, алгоритмы : учебное пособие, Санкт-Петербург: Лань, 2010

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Самостоятельная работа студентов 76 час/семестр и включает:

- повторение еженедельное теоретического (лекционного) материала и изучение материалов по курсу из дополнительных источников (2час/нед х 17 нед=34 час);
- еженедельное выполнение домашних практических заданий и подготовка к практическим занятиям (1час/нед х 17 нед=17 час);
 - подготовка к контрольной работе (5час/работу х 2 работы = 10 час)
 - подготовка к сдаче коллоквиума 6 час;
 - подготовка к сдаче экзамена 10 час.

Все материалы: БДЗ, вопросы к коллоквиумы, вопросы к экзамену выкладываются в соответствующем временном интервале на сайте кафедры Кибернетики (Библиотека-Материалы для первого курса) здесь.

ОЦЕНОЧНЫЕ СРЕДСТВА

В качестве оценочного средства используется 100 бальная семестровая система, учитывающая посещаемость занятий, активность (выполнение домашних занятий), выполнение тематических домашних заданий по каждому разделу, контрольно-тестовая работа по каждому разделу. Каждый раздел проходит аттестацию.

Итоговый балл за раздел (КИ) формируется следующим образом:

посещаемость семинарских занятий (еженедельно) не менее 80% +2 балла

не менее 50% +1 балл

менее 50% 0 баллов

БДЗ – выполнения ДЗ (по разделу)

Выполнено не менее 90% +10 баллов

Выполнено от 80-до 89% +8 балла

Выполнено от 70-до 79% +6 балла

Выполнено от 60-до 69% +4 балла

Выполнено от 40-до 59% +2 балл

Менее 39% 0 баллов

КР - контрольно-тестовая работа (продолжительность – 1 а/час

(проводится в аудитории) Выполнено не менее 90% +8 баллов

Выполнено от 70-до 89% +6 баллов

Выполнено от 40-до 69% +4 балла

Менее 39% 0 баллов

KU – аттестация раздела (контроль по итогам) Раздел аттестуется, если набрано не менее 60% баллов

Кл - коллоквиум по Разделу «Комбинаторика». Проводится на 8 неделе в аудитории, во вне учебное время, письменно. Продолжительность — 2 а/часа. Студентам выдается вариант задания, состоящий из двух теоретических вопросов (из списка вопросов к коллоквиуму, который выкладывается на официальном сайте кафедры «Кибернетика» (http://cyber.mephi.ru) в разделе «Библиотека-Материалы для 1 курса» на 4 неделе семестра) и практической задачи, оцениваемых по степени выполнения каждый

Выполнено не менее 90% +30 баллов

Выполнено от 80-до 89% +25 балла

Выполнено от 70-до 79% +20 балла

Выполнено от 60-до 69% +15 балла

Выполнено от 50-до 59% +10 балл

Менее 49% 0 баллов

По разделу "Комбинаторика" организуется по 1 пересдаче в течение семестра; На зачете организуется 1 пересдача

Экзамен (40 баллов). На экзамен выносятся вопросы, относящиеся ко всем разделам. Экзамен проводится в письменном виде по индивидуальному экзаменационному билету. Каждый билет содержит 10 заданий. Два из них - теоретические, которые выбираются из списка вопросов к экзамену. Остальные задания связаны с проверкой теоретических и практических знаний по всем разделам дисциплины. Письменные ответы студента регистрируются на специальных бланках. Студент обязательно отмечает на этих бланках символом "+" те вопросы и задачи из билета, на которые даны полные о развернутые ответы. Отмечает символом "¬", если ответ не полон или решение задачи не выполнено до конца. Символом "-" отмечаются те вопросы (задачи), которые не нашли своего отражения в ответах. Каждый вопрос оценивается, по следующей схеме:

- 4 балла (полный развернутый ответ на теоретический вопрос или полное и обоснованное решение практической задачи);
- 2 балла (ответ на теоретический вопрос не полон, имеются отдельные неточности в определениях и теоремах, получены частичные результаты решения практической задачи);
- 0 баллов (ответы на теоретический вопрос отсутствуют, обоснование оперирует ложными понятиями либо полностью отсутствует и т.п.);

Методические указания по выполнению домашнего задания

Варианты заданий объявляются на официальном сайте кафедры «Кибернетика» (http://cyber.mephi.ru) в разделе «Библиотека-Материалы для 1 курса» перед началом выполнения заданий.

Автор(ы):

Гусев Алексей Игоревич