Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КАФЕДРА АВТОМАТИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Направление подготовки (специальность)

[1] 14.05.01 Ядерные реакторы и материалы

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	2	72	30	0	15		27	0	3
Итого	2	72	30	0	15	0	27	0	

АННОТАЦИЯ

Дисциплина относится к вариативной части профессионального модуля.

Даются основные сведения теории автоматического управления. Рассматриваются системы автоматического управления и защиты ядерных энергетических установок

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются:

- изучение моделей ядерных реакторов и физико-энергетических установок для целей автоматизации и способов построения подсистем САУ
- усвоение представлений о ФЭУ, как объекте управления в АСУТП, способов построения подсистем и элементов АСУТП ФЭУ

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к разделу «специальность», является смежной для изучения других дисциплин по специальности. Студент должен быть знаком с физикой ядерных реакторов.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

1 , 1	тс
Код и наименование компетенции	Код и наименование индикатора достижения
	компетенции
ОПК-1 [1] – Способен использовать	3-ОПК-1 [1] – Знать основные законы
базовые знания	естественнонаучных дисциплин в профессиональной
естественнонаучных дисциплин в	деятельности, методы математического анализа и
профессиональной деятельности,	моделирования, теоретического и экспериментального
применять методы	исследования
математического анализа и	У-ОПК-1 [1] – Уметь использовать основные законы
моделирования, теоретического и	естественнонаучных дисциплин в профессиональной
экспериментального исследования	деятельности, применять методы математического
	анализа и моделирования, теоретического и
	экспериментального исследования
	В-ОПК-1 [1] – Владеть навыками использования
	основных законов естественнонаучных дисциплин в
	профессиональной деятельности, применения методов
	математического анализа и моделирования,
	теоретического и экспериментального исследования
ОПК-2 [1] – Способен	3-ОПК-2 [1] – Знать критерии оценки, выявлять
формулировать цели и задачи	приоритеты решения задач
исследования, выбирать критерии	У-ОПК-2 [1] – Уметь формулировать цели и задачи
оценки, выявлять приоритеты	исследования, выбирать критерии оценки, выявлять
решения задач в сфере ядерной	приоритеты решения задач

энергетики и технологий	В-ОПК-2 [1] – Владеть навыками формулирования целей
	и задач исследования, выбирать критерии оценки,
	выявлять приоритеты решения задач

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания Профессиональное воспитание	Задачи воспитания (код) Создание условий, обеспечивающих, формирование ответственности за профессиональный выбор, профессиональное развитие и профессиональные решения (В18)	Воспитательный потенциал дисциплин Использование воспитательного потенциала дисциплин профессионального модуля для формирования у студентов ответственности за свое профессиональное развитие посредством выбора студентами индивидуальных образовательных траекторий, организации системы общения между всеми участниками образовательного процесса, в том числе с использованием новых
Профессиональное воспитание	Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)	информационных технологий. 1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического

мышления, умения рассматривать
различные исследования с
экспертной позиции посредством
обсуждения со студентами
современных исследований,
исторических предпосылок
появления тех или иных открытий
и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	8 Семестр						
1	Раздел 1	1-8	16/0/8		25	КИ-8	3-ОПК-1, У-ОПК-1, В-ОПК-1, 3-ОПК-2, У-ОПК-2, В-ОПК-2
2	Раздел 2	9-15	14/0/7		25	КИ-15	3-ОПК-1, У-ОПК-1, В-ОПК-1, 3-ОПК-2, У-ОПК-2, В-ОПК-2
	Итого за 8 Семестр		30/0/15		50		
	Контрольные мероприятия за 8 Семестр				50	3	3-ОПК-1, У-ОПК-1, В-ОПК-1, 3-ОПК-2, У-ОПК-2, В-ОПК-2

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	8 Семестр	30	0	15
1-8	Раздел 1	16	0	8
1 - 2	Состояние и перспективы систем управления в	Всего	аудиторных	часов
	ядерной энергетике	4	0	2
	Состояние и перспективы систем управления в ядерной	Онлай	Н	
	энергетике. Понятие о системе управления и защиты и об	0	0	0
	АСУТП на физико-энергетической установке (ФЭУ).			
	Особенности ФЭУ как объекта управления			
3 - 4	Введение в дисциплину	Всего	аудиторных	
	Предмет курса и его задачи. Понятие о системах	4	0	2
	автоматического управления (САУ) и системах	Онлай	H	
	автоматического регулирования (САР). Типовая	0	0	0
	функциональная схема САР. Основные элементы систем.			
	Принципы классификации систем.			
5 - 6	Составление математической модели динамической		аудиторных	1
	системы	4	0	2
	Математические модели объектов и систем управления.	Онлай		1
	Формы представления моделей. Описание систем с	0	0	0
	помощью дифференциальных уравнений в пространстве			
	переменных состояния, понятие вектора входа, вектора			
	выхода и вектора состояния. Определение и алгоритм			
	вычисления передаточной функции. Представление			
	систем в виде структурных математических моделей.			
7 0	Эквивалентные преобразования структурных схем.	D		
7 - 8	Типовые динамические звенья		аудиторных	
	Представление описания системы в виде набора типовых	4	0	2
	динамических звеньев (ТДЗ). Переходные и импульсные	Онлай		
	переходные характеристики динамических звеньев. Частотные характеристики ТДЗ.	0	0	0
9-15	Раздел 2	14	0	7
9 - 10	Устойчивость линейных систем			1 '
9 - 10	Понятие устойчивости по Ляпунову. Прямой метод	4	аудиторных 0	2
	исследования устойчивости. Частотные критерии	Онлай	_	2
	исследования устойчивости. Истотные критерии исследования устойчивости. Метод корневого годографа.	Онлаи	0	0
11 - 12				
11 - 12	Качество регулирования Основные показатели качества регулирования. Методы	4	аудиторных 0	2
	оценки основных показателей качества. Оценка характера	Онлай	Ü	<i>L</i>
	переходных процессов с помощью корневого годографа.	Онлаи	0	0
	перекодных процессов с помощью корпевого годографа.	U	U	U
	Определение переходных процессов в системе с помощью			
	Определение переходных процессов в системе с помощью обратного преобразования Лапласа.			
13 - 14	обратного преобразования Лапласа.	Beero	аулитопных	Часов
13 - 14		Всего а	аудиторных 0	часов 2

	ошибки. Методы повышения точности регулирования.	0	0	0
	Анализ точности при наличии возмущающего			
	воздействия.			
15	Проектирование систем автоматического управления	Всего а	удиторных	часов
	Частотный метод синтеза последовательного	2	0	1
	корректирующего устройства. Расчет корректирующего	Онлайн	I	
	устройства в обратной связи внутреннего контура. Синтез	0	0	0
	корректирующего устройства методом корневого			
	годографа. Понятие управляемости и наблюдаемости			
	системы.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	8 Семестр
1 - 2	Вводное занятие
	Ознакомление с компьютерной системой моделирования динамических процессов
	Simulink.
3 - 5	Лабораторная работа №1.
	Исследование статических характеристик соединений линейных и нелинейных
	элементов.
6 - 8	Лабораторная работа №2.
	Динамические системы первого порядка.
9 - 12	Лабораторная работа №3.
	Динамические системы второго порядка.
13 - 15	Лабораторная работа №4.
	Анализ устойчивости, качества и точности линейных систем.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

- 1 Чтение лекций с помошью современных компьютерных технологий.
- 2 Обсуждение контрольных вопросов при проведении аудиторных занятий.
- 3 Проведение лабораторных работ.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ОПК-1	3-ОПК-1	3, КИ-8, КИ-15
	У-ОПК-1	3, КИ-8, КИ-15
	В-ОПК-1	3, КИ-8, КИ-15
ОПК-2	3-ОПК-2	3, КИ-8, КИ-15
	У-ОПК-2	3, КИ-8, КИ-15
	В-ОПК-2	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех Оценка		Требования к уровню освоению	
	балльной шкале	ECTS	учебной дисциплины	
90-100		A	Оценка «отлично» выставляется студенту,	
			если он глубоко и прочно усвоил	
	5 — «отлично»		программный материал, исчерпывающе,	
			последовательно, четко и логически	
			стройно его излагает, умеет тесно	
			увязывать теорию с практикой,	
			использует в ответе материал	
			монографической литературы.	
85-89		В	Оценка «хорошо» выставляется студенту,	
75-84		C	если он твёрдо знает материал, грамотно и	
	4 <i>– «хорошо»</i>		по существу излагает его, не допуская	
70-74		D	существенных неточностей в ответе на	
			вопрос.	
65-69		Е	Оценка «удовлетворительно»	
60-64			выставляется студенту, если он имеет	
			знания только основного материала, но не	
	3 — «удовлетворительно»		усвоил его деталей, допускает неточности,	
			недостаточно правильные формулировки,	
			нарушения логической	
			последовательности в изложении	
			программного материала.	
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно»	
			выставляется студенту, который не знает	
			значительной части программного	
			материала, допускает существенные	
			ошибки. Как правило, оценка	
			«неудовлетворительно» ставится	

	студентам, которые не могут продолжити обучение без дополнительных занятий по	
	соответствующей дисциплине.	

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ S79 Springer Handbook of Automation : , , Berlin, Heidelberg: Springer Berlin Heidelberg,, 2009
- 2. 681.5 Ш23 Лабораторный практикум "Теория автоматического управления. Методы исследования нелинейных систем" : учебное пособие для вузов, Шапкарин А.В., Кулло И.Г., Москва: НИЯУ МИФИ, 2012
- 3. ЭИ Ш23 Лабораторный практикум "Теория автоматического управления. Методы исследования нелинейных систем" : учебное пособие для вузов, Шапкарин А.В., Кулло И.Г., Москва: НИЯУ МИФИ, 2012

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Ш23 Лабораторный практикум по курсу "Теория автоматического управления". Линейные непрерывные динамические системы : учебное пособие для вузов, Шапкарин А.В., Кулло И.Г., Москва: МИФИ, 2007
- 2. 681.5 Ш23 Лабораторный практикум по курсу "Теория автоматического управления". Линейные непрерывные динамические системы : учебное пособие для вузов, Шапкарин А.В., Кулло И.Г., Москва: МИФИ, 2007
- 3. 681.5 Ш23 Лабораторный практикум по курсу "Теория управляющих систем" : Учеб. пособие, Шапкарин А.В., М.: МИФИ, 1981

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

1. Указания для прослушивания лекций

Перед началом занятий внимательно ознакомиться с учебным планом проведения лекций и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения лекционного курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания для выполнения лабораторных работ

Соблюдать требования техники безопасности, для чего прослушать необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы провести самостоятельно подготовку к работе изучив основные теоретические положения, знание которых необходимо для осмысленного выполнения работы.

В процессе выполнения работы следует постоянно общаться с преподавателем, не допуская по возможности неправильных действий.

Основные результаты экспериментов необходимо зафиксировать в письменном виде.

При сдаче зачета по работе подготовить отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

3. Указания для выполнения самостоятельной работы

Получить у преподавателя задание и список рекомендованной литературы. Изучение теоретических вопросов следует проводить по возможности самостоятельно, но при затруднениях обращаться к преподавателю.

Подготовить письменный отчет о проделанной работе.

При выполнении фронтальных заданий по усмотрению преподавателя работа может быть оценена без письменного отчета на основе ответов на контрольные вопросы, при условии активной самостоятельной работы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе. Дать перечень рекомендованной литературы и вновь появившихся литературных источников.

Перед изложением текущего лекционного материала напомнить об основных итогах, достигнутых на предыдущих лекциях. С этой целью задать несколько вопросов аудитории и осуществить выборочный контроль знания студентов.

Внимательно относиться к вопросам студентов и при необходимости давать дополнительные более подробные пояснения.

При чтении лекций преимущественное внимание следует уделять качественным вопросам, не следует увлекаться простыми математическими выкладками, оставляя их либо на студентов, либо отсылая студентов к литературным источникам и методическим пособиям.

В процессе лекционного курса необходимо по возможности часто возвращаться к основным понятиям (здесь возможен выборочный контроль знаний студентов).

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Давать рекомендации студентам для подготовки к очередным семинарам и лабораторным занятиям.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения лабораторных занятий.

Соблюдать требования техники безопасности и проводить необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы проверить степень готовности студентов, напомнить и обсудить основные теоретические положения, знание которых необходимо для осмысленного выполнения работ.

В процессе выполнения работы следует постоянно общаться со студентами, не допуская по возможности их неправильных действий.

Требовать, чтобы основные результаты экспериментов были зафиксированы студентами в письменном виде.

При приеме зачета по работе требовать отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

3. Указания по контролю самостоятельной работы студентов

По усмотрению преподавателя задание на самостоятельную работу может быть индивидуальным или фронтальным.

При использовании индивидуальных заданий требовать от студента письменный отчет о проделанной работе.

При применении фронтальных заданий вести коллективные обсуждения со студентами основных теоретических положений.

С целью контроля качества выполнения самостоятельной работы требовать индивидуальные отчеты (допустимо вместо письменного отчета применять индивидуальные контрольные вопросы).

Автор(ы):

Стародубцев Илья Анатольевич